Operational risk factors in agriculture: Evaluation through the Analytical Hierarchical Process (AHP) method. Case study on the coffee crop
Main Article Content
Abstract
The objective of this study was to determine a weighted value of the importance of the sources of operational risk in agriculture, as well as the factors that compose them. Besides, operational risk events applied to a case study in coffee production (Coffea arabica) in Costa Rica were identified. The panels were used for the application of the analytical hierarchy process method (AHP) to obtain the weight of importance concerning the risk of the sources and operational risk factors, likewise, a second panel was implemented under the same structure obtained by the AHP method for the determination of risk events in the selected crop. The results obtained determined that, in general, climatic and environmental factors are the riskiest (55.96%), followed by production processes (24.95%), while human resource management and production technologies have the same weight (9.55%). Weight was obtained for each proposed risk factor and 79 risk events were identified in the coffee crop under this same structure. This study allowed us to prioritize the components of operational risk in agricultural production systems, a concept that had not been previously analyzed in the agricultural sector; and allowed the generation of a solid structure for the identification of specific risk events.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Las personas autoras conservan los derechos de autor/a y ceden a la revista el derecho de la primera publicación y que pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, las personas autoras asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Badri, A., Nadeau, S., & Gbodossou, A. (2013). A new practical approach to risk management for underground mining project in Quebec. Journal of Loss Prevention in the Process Industries, 26(6), 1145–1158. https://doi.org/10.1016/j.jlp.2013.04.014
Baquet, A. E., Hambleton, R., & Jose, D. (1997). Introduction to risk management. http://agris.fao.org/agris-search/search.do?recordID=US201300017609
Barnett, B. J., & Coble, K. H. (2008). Are Our Agricultural Risk Management Tools Adequate for a New Era? Choices, 1, 36–39. https://doi.org/10.22004/ag.econ.94700
Bergfjord, O. J. (2009). Risk perception and risk management in Norwegian aquaculture. Journal of Risk Research, 12(1), 91–104. https://doi.org/10.1080/13669870802488941
Delfiner, M., & Pailhé, C. (2009, enero 5). Técnicas cualitativas para la gestión del Riesgo Operacional [MPRA Paper]. https://mpra.ub.uni-muenchen.de/15809/
Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., Oliveira, C. H. de, & Carvalho, H. D. (2019). The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. Journal of Cleaner Production, 212, 119–138. https://doi.org/10.1016/j.jclepro.2018.11.270
Elias, E. H., Flynn, R., Idowu, O. J., Reyes, J., Sanogo, S., Schutte, B. J., Smith, R., Steele, C., & Sutherland, C. (2019). Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production. Sustainability, 11(23), 6619. https://doi.org/10.3390/su11236619
Fahad, S., Wang, J., Khan, A. A., ullah, A., Ali, U., Hossain, M. S., Khan, S. U., Huong, N. T. L., Yang, X., Hu, G., & Bilal, A. (2018). Evaluation of farmers’ attitude and perception toward production risk: Lessons from Khyber Pakhtunkhwa Province, Pakistan. Human and Ecological Risk Assessment: An International Journal, 24(6), 1710–1722. https://doi.org/10.1080/10807039.2018.1460799
Flaten, O., Lien, G., Koesling, M., Valle, P. S., & Ebbesvik, M. (2005). Comparing risk perceptions and risk management in organic and conventional dairy farming: Empirical results from Norway. Livestock Production Science, 95(1–2), 11–25. https://doi.org/10.1016/j.livprodsci.2004.10.014
Girdžiūtė, L. (2012). Risks in Agriculture and Opportunities of their Integrated Evaluation. Procedia - Social and Behavioral Sciences, 62, 783–790. https://doi.org/10.1016/j.sbspro.2012.09.132
Guan, Z., & Wu, F. (2017). Modeling heterogeneous risk preferences. Agricultural Finance Review, 77(2), 324–336. https://doi.org/10.1108/AFR-03-2015-0016
Hansson, H., & Lagerkvist, C. J. (2012). Measuring farmers’ preferences for risk: A domain-specific risk preference scale. Journal of Risk Research, 15(7), 737–753. https://doi.org/10.1080/13669877.2012.657217
Harwood, J., Heifner, R., Coble, K., Perry, J., & Somwaru, A. (1999). Managing Risk in Farming: Concepts, Research, and Analysis. U.S. Department of Agriculture, ERS.
He, B., Wang, Q.-J., Wu, D., & Zhou, B.-B. (2016). Spatio-temporal characteristics of agricultural drought in Shaanxi Province, China based on integrated disaster risk index. Chinese Journal of Applied Ecology, 27(10), 3299–3306. Scopus. https://doi.org/10.13287/j.1001-9332.201610.040
Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2011.04.143
Kahan, D. (2013). Managing risk in farming (Reprint). FAO.
Komarek, A. M., De Pinto, A., & Smith, V. H. (2020). A review of types of risks in agriculture: What we know and what we need to know. Agricultural Systems, 178, 102738. https://doi.org/10.1016/j.agsy.2019.102738
Lagerkvist, C. J. (2005). Assessing farmers’ risk attitudes based on economic, social, personal, and environmental sources of risk: Evidence from Sweden. Selected Paper 136315. https://doi.org/10.22004/ag.econ.19361
Li, L., Kuang, Z., Mo, J., & Meng, C. (2013). Assessment of risk ranking for autumn drought in Guangxi province based on AHP and GIS. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(19), 193–201. Scopus. https://doi.org/10.3969/j.issn.1002-6819.2013.19.024
Lu, T., Guo, J., Cheng, M., Li, H., Aimaiti, Y., & Liu, Y. (2016). Model establishment and zoning of wind-dust risk assessment to featured forestry and fruit industry in Xinjiang. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 32, 169–176. Scopus. https://doi.org/10.11975/j.issn.1002-6819.2016.z2.023
Miller, A., Dobbins, C., Pritchett, J., Boehlje, M., & Ehmke, C. (2004). Risk management for farmers (p. 31). Departamento de Economía Agrícola. Universidad de Purdue. https://www.researchgate.net/publication/23514946_RISK_MANAGEMENT_FOR_FARMERS
Palma Rodríguez, C. (2011). ¿Cómo construir una matriz de riesgo operativo? Ciencias Económicas, 29(1), 630–635.
Pelka, N., Musshoff, O., & Weber, R. (2015). Does weather matter? How rainfall affects credit risk in agricultural microfinance. Agricultural Finance Review, 75(2), 194–212. https://doi.org/10.1108/AFR-10-2014-0030
Quirós Badilla, D. F., & Solórzano Thompson, J. (2018). Propuesta de una metodología para la evaluación de riesgo operativo en sistemas de producción agrícola en Costa Rica aplicado a un estudio de caso en el cultivo de café (Coffea arabica). Universidad de Costa Rica.
Quirós-Badilla, D. F. (2019). Riesgo operativo en sistemas de producción agrícola. Propuesta base para su evaluación. Revista e-Agronegocios, 5(2). https://doi.org/10.18845/rea.v5i2.4455
Rossinskaya, M. V., Saveleva, N. A., & Rokotyanskaya, V. V. (2019). Tools for improving operational risk management in agriculture. Iraqi Journal of Agricultural Sciences, 50(Special Issue), 134–142. Scopus.
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590
Srinivasa Rao, C., Kareemulla, K., Krishnan, P., Murthy, G. R. K., Ramesh, P., Ananthan, P. S., & Joshi, P. K. (2019). Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecological Indicators, 105, 621–633. Scopus. https://doi.org/10.1016/j.ecolind.2018.06.038
Sulewski, P., & Kłoczko-Gajewska, A. (2014). Farmers’ risk perception, risk aversion and strategies to cope with production risk: An empirical study from Poland.
Studies in Agricultural Economics, 116(3), 140–147. https://doi.org/10.7896/j.1414
Toledo, R., Engler, A., & Ahumada, V. (2011). Evaluation of Risk Factors in Agriculture: An Application of the Analytical Hierarchical Process (AHP) Methodology. Chilean Journal of Agricultural Research, 71(1), 114–121. https://doi.org/10.4067/S0718-58392011000100014
Wilson, P. N., Luginsland, T. R., & Armstrong, D. V. (1988). Risk Perceptions and Management Responses of Arizona Dairy Producers. Journal of Dairy Science, 71(2), 545–551. https://doi.org/10.3168/jds.S0022-0302(88)79588-0
Yalçinkaya, S. (2014). Agricultural Risk Management: Optimization Model Proposal. En Proceedings of MAC-EMMT 2014: The 3rd Multidisciplinary Academic Conference in Prague Economics, Management, Marketing and Tourism MAC-EMMT 2014. MAC Prague consulting.
Young, D. L. (1979). Risk Preferences of Agricultural Producers: Their Use in Extension and Research. American Journal of Agricultural Economics, 61(5), 1063. https://doi.org/10.2307/3180376
Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158–181. https://doi.org/10.1016/j.eswa.2017.02.016