Variations on kurtosis estimation with different statistics software

Main Article Content

Luz Elena Barrantes Aguilar, Licda.

Abstract

Kurtosis, or a distribution’s fourth moment, is used to describe distributions and belongs to some normality contrast tests. Most of the statistical softwares include kurtosis, which makes the estimation to be relatively easy. Nevertheless, for a same data set, statistical softwares can provide a different result. The objective of this work is to depict kurtosis estimation differences between statistical softwares that are most commonly used among agricultural economists. Two samples were used to compare kurtosis coefficient estimation differences with nine different statistic softwares. Results shows that these differences are not due to a mistaken estimation procedure, but mainly because the term kurtosis is used wrongly. In conclusion, when working with a small sample size and adjustment factor is not considered, there is a 20% probability of making a mistaken conclusion.

Article Details

How to Cite
Barrantes Aguilar, L. E. (2019). Variations on kurtosis estimation with different statistics software. E-Agronegocios, 5(2). https://doi.org/10.18845/rea.v5i2.4456
Section
Artículos
Author Biography

Luz Elena Barrantes Aguilar, Licda., Chapingo Autonomous University, Mexico.

Maestría en Ciencias en Economía Agrícola y de los recursos naturales de la Universidad Autónoma de Chapingo, México. Licenciada en Economía Agrícola y Agronegocios de la Universidad de Costa Rica, Costa Rica. Docente e investigadora en la Universidad de Costa Rica.

References

Greene, W. H. (2011). Econometric Analysis. (7ed). Prentice Hall. 1241 p.

Byers, R. (2000). On the Maximum of the Standardized Fourth Moment. InterStat,1(2),1-7.

Fernández, S. F., Sánchez, J. M., Córdoba, A., Cordero, J. M., y Largo, A. C. (2002). Estadística descriptiva. ESIC Editorial. 566 p.

Finucan, H. M. (1964). A note on Kurtosis. Journal of the Royal Statistical Society, Series B, 26, 111-112. DOI: 10.1111/j.2517-6161.1964.tb00545.x.

Hosking, J. (1990). L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society. Series B, 52(1), 105-124.

Kim, T. y White, H. (2003). On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index. UC San Diego: Department of Economics, UCSD. Disponible en: https://escholarship.org/uc/item/7b52v07p

Mardia, K. V. (1970). Measures of Multivariate Skewness and Kurtosis with Applications. Biometrika, 57, 519-530. DOI: 10.2307/2334770.

Moors, J. (1988). A Quantile Alternative for Kurtosis. Journal of the Royal Statistical Society. Series D (The Statistician), 37(1), 25-32. DOI: 10.2307/2348376.

Person, K. (1905). Das Fehlergesetz und Seine Verallgemeinerungen durch Fechner und Pearson. A Rejoinder. Biometrika, 4(1/2), 169-212. DOI: 10.2307/2331536.

Ruppert, D. (1987). What is kurtosis? An influence function approach. The American Statistician, 41(1), 1-5. DOI: 10.2307/2684309.

Seier, E. (2003). Curtosis. PESQUIMAT, VI(2), 1- 26.

Student (1927). Errors of Routine Analysis. Biometrika, 19(1/2), 151-164. DOI: 10.2307/2332181.

Westfall, P.. (2014). Kurtosis as Peakedness, 1905-2014. RIP. The American Statistician, 68(3), 191-195. DOI:10.1080/00031305.2014.917055.

Most read articles by the same author(s)