Factors affecting the cost and profitability of microalgae production: a literature review

Main Article Content

Olga Calvo
Anyoleth Mora Ureña
Wilson Muñoz Valerio

Abstract

The scientific and academic production related to microalgae production has a substantive approach that exposes the profitability from the point of view of the efficiency of different production systems, as well as the interaction of various factors. However, the academic and scientific research generated in this area is restricted to the review of the factors that could influence the cost and profitability associated with microalgae production; thus, the need arises to know which are those factors that could have a possible impact on this topic. From a documentary review, it became evident that there is no evident inclination or influence towards one or more specific factors, since profitability and cost will depend on the interaction of various aspects, such as carbon sources, production system, means of production, harvesting strategies, biological productivity, geographic location, value and required amount of labor, tariffs, and water use, among others.

Article Details

How to Cite
Calvo, O., Mora Ureña, A., & Muñoz Valerio, W. (2024). Factors affecting the cost and profitability of microalgae production: a literature review. E-Agronegocios, 10(1), 1–21. https://doi.org/10.18845/ea.v10i1.6657
Section
Notas técnicas
Author Biography

Olga Calvo, Universidad de Costa Rica, San José, Costa Rica

Professor-researcher at the University of Costa Rica. Professional Master's Degree in Business Administration and Management with an emphasis on Finance, from the University of Costa Rica and a Bachelor's Degree in Agricultural Economics and Agribusiness with an emphasis on Agro-environment, from the University of Costa Rica, with a basic training in Agricultural Engineering with an emphasis on Agricultural Economics.
Researcher at the Center for Research in Agricultural Economics and Agribusiness Development (CIEDA), since 2011. Teacher of courses in accounting, finance, project evaluation and microeconomics.
Trainer in accounting and financial issues, for institutions such as the Ministry of Agriculture and Livestock (MAG), Rural Development Institute (INDER), Livestock Corporation (Corfoga), Inter-American Institute for Cooperation on Agriculture (IICA), among others.
Currently, researcher in projects 737-B9-106 Economic evaluation of production costs in dairy activity for decision-making, at the Alfredo Volio Mata Station. Y C-0455 Development of foods enriched with arthrospira cyanobacterium (spirulina) biomass containing bioactive compounds with potential benefits for human health.

References

Abalde, J., Cid, Á., Fidalgo Paredes, P., Torres, E., y Herrero, C. (1995). Microalgas: cultivo y aplicaciones. Universidade da Coruña, Servizo de Publicacións. https://ruc.udc.es/dspace/handle/2183/25013

Acién, F., Fernández, J., Magán, J., y Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology advances, 30(6), 1344-1353. https://doi.org/10.1016/j.biotechadv.2012.02.005

Acién, F., Molina, E., Fernández, J., Barbosa, M., Gouveia, L., Sepúlveda, C., y Arbib, Z. (2017a). Economics of microalgae production. En C, González y R, Muñoz (Eda). In Microalgae-based biofuels and bioproducts (pp. 485-503). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101023-5.00020-0

Acién, F., Molina, E., Reis, A., Torzillo, G., Zittelli, G., Sepúlveda, C., y Masojídek, J. (2017b). Photobioreactors for the production of microalgae. In Microalgae-based biofuels and bioproducts (pp. 1-44). Woodhead Publishing.

Amer, L., Adhikari, B., y Pellegrino, J. (2011). Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource technology, 102(20), 9350-9359. https://doi.org/10.1016/j.biortech.2011.08.010

Argento, F., Sempere, C., y Van Lierde, F. (2016). Factibilidad técnica y económica de la producción de spirulina. [Instituto Tecnológico de Buenos Aires]. https://ri.itba.edu.ar/entities/proyecto%20final%20de%20grado/ad872968-0587-42c0-93cf-21840d891eaf

Barceló, M., Hoyo, Á., Rodríguez, E., Guzmán, J., y Acién, F. G. (2022). A new control strategy to improve the mass transfer capacity and reduce air injection costs in raceway reactors. New Biotechnology, 70, 49-56. https://doi.org/10.1016/j.nbt.2022.04.005

Benemann, J. (2013). Microalgae for biofuels and animal feeds. Energies, 6(11), 5869-5886. https://doi.org/10.3390/en6115869

Benvenuti, G. (2016). Batch and repeated-batch oil production by microalgae. (Tesis de Doctorado, Wageningen University and Research). https://www.proquest.com/docview/2572247622?pq-origsite=gscholar&fromopenview=true

Bhatt, A., Khanchandani, M., Rana, M., y Prajapati, S. (2022). Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production, 370, 133456. https://doi.org/10.1016/j.jclepro.2022.133456

Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of biotechnology, 70(1-3), 313-321. https://doi.org/10.1016/S0168-1656(99)00083-8

Bortolini, D., Maciel, G., Fernandes, I., Pedro, A., Rubio, F., Branco, I., y Haminiuk, C. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 100134. https://doi.org/10.1016/j.fochms.2022.100134

Chauton, M., Reitan, K., Norsker, N., Tveteras, R., y Kleivdal, H. (2015). A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture, 436, 95-103. https://doi.org/10.1016/j.aquaculture.2014.10.038

Chávez, C, y Melgar, M. (2016). Comparación del efecto sobre la biomasa y tiempo de producción de lechuga hidropónica (lactuca sativa sp) de una solución estándar frente a un preparado de microalgas (spirulina sp). [Tesis de bachillerato, Universidad Católica de Santa María].

Contreras, C., Peña, J., Flores, L., y Cañizares, R. (2003). Avances en el diseño conceptual de fotobiorreactores para el cultivo de microalgas. Interciencia, 28(8), 450-456. http://ve.scielo.org/scielo.php?pid=S0378-18442003000800004&script=sci_arttext

Davis, R., Aden, A., y Pienkos, P. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88(10), 3524-3531. https://doi.org/10.1016/j.apenergy.2011.04.018

Dębowski, M., Zieliński, M., Kazimierowicz, J., Kujawska, N., y Talbierz, S. (2020). Microalgae cultivation technologies as an opportunity for bioenergetic system development—advantages and limitations. Sustainability, 12 (23), 1-37. https://doi.org/10.3390/su12239980

Deza, E., y Mendiola, L. (2019). Plan de negocio para cultivo de microalga Arthrospira Platensis como aditivo alimenticio para pollos de engorde. [Tesis de maestría, Universidad Esan] https://repositorio.esan.edu.pe/handle/20.500.12640/1708

Draaisma, R., Wijffels, R., Slegers, P., Brentner, L., Roy, A., y Barbosa, M. (2013). Food commodities from microalgae. Current opinion in biotechnology, 24(2), 169-177. https://doi.org/10.1016/j.copbio.2012.09.012

García, J., De Vicente, M., y Galan, B. (2018). Presente y futuro del cultivo de las microalgas para su uso como superalimentos. Mediterráneo Económico, 31, 333-350. https://www.publicacionescajamar.es/publicacionescajamar/public/pdf/publicaciones-periodicas/mediterraneo-economico/31/31-806.pdf

Gómez, L. (2007). Microalgas: Aspectos ecológicos y biotecnológicos. Revista cubana de química, 19(2), 3-20. https://www.redalyc.org/pdf/4435/443543707001.pdf

Hernández, A., y Labbé, J. (2014). Microalgas, cultivo y beneficios. Revista de biología marina y oceanografía, 49(2), 157-173. http://dx.doi.org/10.4067/S0718-19572014000200001

Lam, M., y Lee, K. (2012). Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology advances, 30(3), 673-690. https://doi.org/10.1016/j.biotechadv.2011.11.008

Lu, Y., Xiang, W., y Wen, Y. (2011). Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. Journal of applied phycology, 23, 265-269. https://doi.org/10.1007/s10811-010-9552-4

Lundquist, T., Woertz, I., Quinn, N., y Benemann, J. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute. https://digitalcommons.calpoly.edu/cenv_fac/188/

Madkour, F., Kamil, A., y Nasr, H. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The egyptian journal of aquatic research, 38(1), 51-57. https://doi.org/10.1016/j.ejar.2012.09.003

Malpartida, R., Aldana, L., Sánchez, K., Gómez, L., y Lobo, J. (2022). El valor nutricional y compuestos bioactivos de la Espirulina: Potencial suplemento alimenticio. Ecuadorian Science Journal, 6(1), 42-51. https://doi.org/10.46480/esj.6.1.133

Martín, S., y Lafuente, V. (2017). Referencias bibliográficas: indicadores para su evaluación en trabajos científicos. Investigación bibliotecológica, 31(71), 151-180. https://www.scielo.org.mx/scielo.php?pid=S0187-358X2017000100151&script=sci_abstract&tlng=pt

Martínez de Sousa, J. (1993). Diccionario de bibliología y ciencias afines. Fundación Germán Sánchez Ruipérez.

Martínez, L. (2009). Eliminación de CO2 con microalgas autóctonas [Tesis de Doctorado, Universidad de León. https://buleria.unileon.es/handle/10612/1414

Morais, M., Radmann, E., Andrade, M., Teixeira, G., Brusch, L., y Costa, J. (2009). Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture, 294(1-2), 60-64. https://doi.org/10.1016/j.aquaculture.2009.05.009

Morillo, M. (2001). Rentabilidad financiera y reducción de costos. Actualidad contable FACES, 4(4), 35-48. https://www.redalyc.org/pdf/257/25700404.pdf

Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G., Muscari Tomajoli, M., Geremia, E., Catone, C., y Ulgiati, S. (2022). Towards sustainable aquaculture systems: Biological and environmental impact of replacing fishmeal with Arthrospira platensis (Nordstedt) (spirulina). Journal of Cleaner Production, 374, 133978. https://doi.org/10.1016/j.jclepro.2022.133978

Norsker, N., Barbosa, M., Vermuë, M., y Wijffels, R. (2011). Microalgal production—a close look at the economics. Biotechnology advances, 29(1), 24-27. https://doi.org/10.1016/j.biotechadv.2010.08.005

Ponce, E. (2013). Superalimento para un mundo en crisis: Spirulina a bajo costo. Idesia (Arica), 31(1), 135-139. http://dx.doi.org/10.4067/S0718-34292013000100016

Posten, C. (2009). Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177. https://doi.org/10.1002/elsc.200900003

Ramírez, L., y Olvera, R. (2006). Uso tradicional y actual de spirulina sp. (arthrospira sp.). Interciencia, 31(9), 657-663.

Raoof, B., Kaushik, B. D., & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and bioenergy, 30(6), 537-542. https://doi.org/10.1016/j.biombioe.2005.09.006

Richardson, J., Johnson, M., y Outlaw, J. (2012). Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research, 1(1), 93-100. https://doi.org/10.1016/j.algal.2012.04.001

Ríos, S., Torres, C., Torras, C., Salvadó, J., Mateo, J., y Jiménez, L. (2013). Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresource Technology, 136, 617-625. https://doi.org/10.1016/j.biortech.2013.03.046

Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J., Eppink, M., Kleinegris, D., Wijffels, R., y Barbosa, M. (2016). Towards industrial products from microalgae. Energy & Environmental Science, 9(10), 3036-3043. https://doi.org/10.1039/C6EE01493C

Sapag, N., Sapag, R., y Sapag, J. (2014). Preparación y evaluación de proyectos. Mc Graw Hill educación.

Shimamatsu, H. (2004). Mass production of Spirulina, an edible microalga. Hydrobiologia, 512(1-3), 39-44. https://doi.org/10.1023/B:HYDR.0000020364.23796.04

Slade, R., y Bauen, A. (2013). Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass and bioenergy, 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019

Singh, G., y Patidar, S. (2018). Microalgae harvesting techniques: A review. Journal of environmental management, 217, 499-508. https://doi.org/10.1016/j.jenvman.2018.04.010

Taylor, B., Xiao, N., Sikorski, J., Yong, M., Harris, T., Helme, T., Smallbone, A., Bhave, A., y Kraft, M. (2013). Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Applied energy, 106, 262-274. https://doi.org/10.1016/j.apenergy.2013.01.065

Tredici, M. (2004). Mass production of microalgae: photobioreactors. A. Richmond (Eds), Handbook of microalgal culture: Biotechnology and applied phycology, (pp.178-214). Backwell Science Ltd. https://books.google.co.cr/books?hl=es&lr=&id=KdHgq2CbTPwC&oi=fnd&pg=PA178&dq=Mass+production+of+microalgae:+Photobioreactors&ots=4BQhQtRFiF&sig=W2OHdDrVx7E667ovzGTvr8VkNR4&redir_esc=y#v=onepage&q=Mass%20production%20of%20microalgae%3A%20Photobioreactors&f=false

Tredici, M. (2010). Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels, 1(1), 143-162. https://doi.org/10.4155/bfs.09.10

Tredici, M., Rodolfi, L., Biondi, N., Bassi, N., y Sampietro, G. (2016). Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Research, 19, 253–263. https://doi.org/10.1016/j.algal.2016.09.005

Vonshak, A., y Richmond, A. (1988). Mass production of the blue-green alga Spirulina: an overview. Biomass, 15(4), 233-247. https://doi.org/10.1016/0144-4565(88)90059-5

Villalta, F., Murillo, F., Martínez, B., Valverde, J., Sánchez, A., y Guerrero, M. (2019). Biotecnología microalgal en Costa Rica: Oportunidades de negocio para el sector productivo nacional, Revista Tecnología en Marcha, 32(9), 85–93. https://doi.org/10.18845/tm.v32i9.4634

Zhu, C., Ji, Y., Du, X., Kong, F., Chi, Z., y Zhao, Y. (2022). A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. Science of The Total Environment, 852, 158515. https://doi.org/10.1016/j.scitotenv.2022.158515