Posibles factores que afectan el costo y la rentabilidad de la producción de microalgas: una revisión bibliográfica
Contenido principal del artículo
Resumen
La producción científica y académica relacionada con la producción de microalgas, tiene un enfoque sustantivo que expone la rentabilidad desde el punto de vista de la eficiencia de diferentes sistemas de producción, así como de la interacción de diversos factores. No obstante, la investigación académica y científica generada en esta área, se restringe en la revisión de los factores que podrían influir en el costo y rentabilidad asociada a la producción de microalgas; con ello, surge la necesidad de conocer cuáles son aquellos factores que podrían presentar una posible afectación en este tema. A partir de una revisión documental se evidenció que no se presenta una inclinación o influencia evidente hacia uno o más factores en específico, ya que la rentabilidad y el costo dependerán de la interacción de diversos aspectos, como fuentes de carbono, sistema productivo, medio de producción, estrategias de recolección, productividad biológica, ubicación geográfica, valor y cantidad requerida de mano de obra, tarifas y uso de agua, entre otros.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Las personas autoras conservan los derechos de autor/a y ceden a la revista el derecho de la primera publicación y que pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, las personas autoras asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
Abalde, J., Cid, Á., Fidalgo Paredes, P., Torres, E., y Herrero, C. (1995). Microalgas: cultivo y aplicaciones. Universidade da Coruña, Servizo de Publicacións. https://ruc.udc.es/dspace/handle/2183/25013
Acién, F., Fernández, J., Magán, J., y Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology advances, 30(6), 1344-1353. https://doi.org/10.1016/j.biotechadv.2012.02.005
Acién, F., Molina, E., Fernández, J., Barbosa, M., Gouveia, L., Sepúlveda, C., y Arbib, Z. (2017a). Economics of microalgae production. En C, González y R, Muñoz (Eda). In Microalgae-based biofuels and bioproducts (pp. 485-503). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101023-5.00020-0
Acién, F., Molina, E., Reis, A., Torzillo, G., Zittelli, G., Sepúlveda, C., y Masojídek, J. (2017b). Photobioreactors for the production of microalgae. In Microalgae-based biofuels and bioproducts (pp. 1-44). Woodhead Publishing.
Amer, L., Adhikari, B., y Pellegrino, J. (2011). Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource technology, 102(20), 9350-9359. https://doi.org/10.1016/j.biortech.2011.08.010
Argento, F., Sempere, C., y Van Lierde, F. (2016). Factibilidad técnica y económica de la producción de spirulina. [Instituto Tecnológico de Buenos Aires]. https://ri.itba.edu.ar/entities/proyecto%20final%20de%20grado/ad872968-0587-42c0-93cf-21840d891eaf
Barceló, M., Hoyo, Á., Rodríguez, E., Guzmán, J., y Acién, F. G. (2022). A new control strategy to improve the mass transfer capacity and reduce air injection costs in raceway reactors. New Biotechnology, 70, 49-56. https://doi.org/10.1016/j.nbt.2022.04.005
Benemann, J. (2013). Microalgae for biofuels and animal feeds. Energies, 6(11), 5869-5886. https://doi.org/10.3390/en6115869
Benvenuti, G. (2016). Batch and repeated-batch oil production by microalgae. (Tesis de Doctorado, Wageningen University and Research). https://www.proquest.com/docview/2572247622?pq-origsite=gscholar&fromopenview=true
Bhatt, A., Khanchandani, M., Rana, M., y Prajapati, S. (2022). Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production, 370, 133456. https://doi.org/10.1016/j.jclepro.2022.133456
Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of biotechnology, 70(1-3), 313-321. https://doi.org/10.1016/S0168-1656(99)00083-8
Bortolini, D., Maciel, G., Fernandes, I., Pedro, A., Rubio, F., Branco, I., y Haminiuk, C. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 100134. https://doi.org/10.1016/j.fochms.2022.100134
Chauton, M., Reitan, K., Norsker, N., Tveteras, R., y Kleivdal, H. (2015). A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture, 436, 95-103. https://doi.org/10.1016/j.aquaculture.2014.10.038
Chávez, C, y Melgar, M. (2016). Comparación del efecto sobre la biomasa y tiempo de producción de lechuga hidropónica (lactuca sativa sp) de una solución estándar frente a un preparado de microalgas (spirulina sp). [Tesis de bachillerato, Universidad Católica de Santa María].
Contreras, C., Peña, J., Flores, L., y Cañizares, R. (2003). Avances en el diseño conceptual de fotobiorreactores para el cultivo de microalgas. Interciencia, 28(8), 450-456. http://ve.scielo.org/scielo.php?pid=S0378-18442003000800004&script=sci_arttext
Davis, R., Aden, A., y Pienkos, P. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, 88(10), 3524-3531. https://doi.org/10.1016/j.apenergy.2011.04.018
Dębowski, M., Zieliński, M., Kazimierowicz, J., Kujawska, N., y Talbierz, S. (2020). Microalgae cultivation technologies as an opportunity for bioenergetic system development—advantages and limitations. Sustainability, 12 (23), 1-37. https://doi.org/10.3390/su12239980
Deza, E., y Mendiola, L. (2019). Plan de negocio para cultivo de microalga Arthrospira Platensis como aditivo alimenticio para pollos de engorde. [Tesis de maestría, Universidad Esan] https://repositorio.esan.edu.pe/handle/20.500.12640/1708
Draaisma, R., Wijffels, R., Slegers, P., Brentner, L., Roy, A., y Barbosa, M. (2013). Food commodities from microalgae. Current opinion in biotechnology, 24(2), 169-177. https://doi.org/10.1016/j.copbio.2012.09.012
García, J., De Vicente, M., y Galan, B. (2018). Presente y futuro del cultivo de las microalgas para su uso como superalimentos. Mediterráneo Económico, 31, 333-350. https://www.publicacionescajamar.es/publicacionescajamar/public/pdf/publicaciones-periodicas/mediterraneo-economico/31/31-806.pdf
Gómez, L. (2007). Microalgas: Aspectos ecológicos y biotecnológicos. Revista cubana de química, 19(2), 3-20. https://www.redalyc.org/pdf/4435/443543707001.pdf
Hernández, A., y Labbé, J. (2014). Microalgas, cultivo y beneficios. Revista de biología marina y oceanografía, 49(2), 157-173. http://dx.doi.org/10.4067/S0718-19572014000200001
Lam, M., y Lee, K. (2012). Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology advances, 30(3), 673-690. https://doi.org/10.1016/j.biotechadv.2011.11.008
Lu, Y., Xiang, W., y Wen, Y. (2011). Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. Journal of applied phycology, 23, 265-269. https://doi.org/10.1007/s10811-010-9552-4
Lundquist, T., Woertz, I., Quinn, N., y Benemann, J. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute. https://digitalcommons.calpoly.edu/cenv_fac/188/
Madkour, F., Kamil, A., y Nasr, H. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The egyptian journal of aquatic research, 38(1), 51-57. https://doi.org/10.1016/j.ejar.2012.09.003
Malpartida, R., Aldana, L., Sánchez, K., Gómez, L., y Lobo, J. (2022). El valor nutricional y compuestos bioactivos de la Espirulina: Potencial suplemento alimenticio. Ecuadorian Science Journal, 6(1), 42-51. https://doi.org/10.46480/esj.6.1.133
Martín, S., y Lafuente, V. (2017). Referencias bibliográficas: indicadores para su evaluación en trabajos científicos. Investigación bibliotecológica, 31(71), 151-180. https://www.scielo.org.mx/scielo.php?pid=S0187-358X2017000100151&script=sci_abstract&tlng=pt
Martínez de Sousa, J. (1993). Diccionario de bibliología y ciencias afines. Fundación Germán Sánchez Ruipérez.
Martínez, L. (2009). Eliminación de CO2 con microalgas autóctonas [Tesis de Doctorado, Universidad de León. https://buleria.unileon.es/handle/10612/1414
Morais, M., Radmann, E., Andrade, M., Teixeira, G., Brusch, L., y Costa, J. (2009). Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture, 294(1-2), 60-64. https://doi.org/10.1016/j.aquaculture.2009.05.009
Morillo, M. (2001). Rentabilidad financiera y reducción de costos. Actualidad contable FACES, 4(4), 35-48. https://www.redalyc.org/pdf/257/25700404.pdf
Napolitano, G., Venditti, P., Agnisola, C., Quartucci, S., Fasciolo, G., Muscari Tomajoli, M., Geremia, E., Catone, C., y Ulgiati, S. (2022). Towards sustainable aquaculture systems: Biological and environmental impact of replacing fishmeal with Arthrospira platensis (Nordstedt) (spirulina). Journal of Cleaner Production, 374, 133978. https://doi.org/10.1016/j.jclepro.2022.133978
Norsker, N., Barbosa, M., Vermuë, M., y Wijffels, R. (2011). Microalgal production—a close look at the economics. Biotechnology advances, 29(1), 24-27. https://doi.org/10.1016/j.biotechadv.2010.08.005
Ponce, E. (2013). Superalimento para un mundo en crisis: Spirulina a bajo costo. Idesia (Arica), 31(1), 135-139. http://dx.doi.org/10.4067/S0718-34292013000100016
Posten, C. (2009). Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177. https://doi.org/10.1002/elsc.200900003
Ramírez, L., y Olvera, R. (2006). Uso tradicional y actual de spirulina sp. (arthrospira sp.). Interciencia, 31(9), 657-663.
Raoof, B., Kaushik, B. D., & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and bioenergy, 30(6), 537-542. https://doi.org/10.1016/j.biombioe.2005.09.006
Richardson, J., Johnson, M., y Outlaw, J. (2012). Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research, 1(1), 93-100. https://doi.org/10.1016/j.algal.2012.04.001
Ríos, S., Torres, C., Torras, C., Salvadó, J., Mateo, J., y Jiménez, L. (2013). Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresource Technology, 136, 617-625. https://doi.org/10.1016/j.biortech.2013.03.046
Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J., Eppink, M., Kleinegris, D., Wijffels, R., y Barbosa, M. (2016). Towards industrial products from microalgae. Energy & Environmental Science, 9(10), 3036-3043. https://doi.org/10.1039/C6EE01493C
Sapag, N., Sapag, R., y Sapag, J. (2014). Preparación y evaluación de proyectos. Mc Graw Hill educación.
Shimamatsu, H. (2004). Mass production of Spirulina, an edible microalga. Hydrobiologia, 512(1-3), 39-44. https://doi.org/10.1023/B:HYDR.0000020364.23796.04
Slade, R., y Bauen, A. (2013). Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass and bioenergy, 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
Singh, G., y Patidar, S. (2018). Microalgae harvesting techniques: A review. Journal of environmental management, 217, 499-508. https://doi.org/10.1016/j.jenvman.2018.04.010
Taylor, B., Xiao, N., Sikorski, J., Yong, M., Harris, T., Helme, T., Smallbone, A., Bhave, A., y Kraft, M. (2013). Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Applied energy, 106, 262-274. https://doi.org/10.1016/j.apenergy.2013.01.065
Tredici, M. (2004). Mass production of microalgae: photobioreactors. A. Richmond (Eds), Handbook of microalgal culture: Biotechnology and applied phycology, (pp.178-214). Backwell Science Ltd. https://books.google.co.cr/books?hl=es&lr=&id=KdHgq2CbTPwC&oi=fnd&pg=PA178&dq=Mass+production+of+microalgae:+Photobioreactors&ots=4BQhQtRFiF&sig=W2OHdDrVx7E667ovzGTvr8VkNR4&redir_esc=y#v=onepage&q=Mass%20production%20of%20microalgae%3A%20Photobioreactors&f=false
Tredici, M. (2010). Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels, 1(1), 143-162. https://doi.org/10.4155/bfs.09.10
Tredici, M., Rodolfi, L., Biondi, N., Bassi, N., y Sampietro, G. (2016). Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Research, 19, 253–263. https://doi.org/10.1016/j.algal.2016.09.005
Vonshak, A., y Richmond, A. (1988). Mass production of the blue-green alga Spirulina: an overview. Biomass, 15(4), 233-247. https://doi.org/10.1016/0144-4565(88)90059-5
Villalta, F., Murillo, F., Martínez, B., Valverde, J., Sánchez, A., y Guerrero, M. (2019). Biotecnología microalgal en Costa Rica: Oportunidades de negocio para el sector productivo nacional, Revista Tecnología en Marcha, 32(9), 85–93. https://doi.org/10.18845/tm.v32i9.4634
Zhu, C., Ji, Y., Du, X., Kong, F., Chi, Z., y Zhao, Y. (2022). A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. Science of The Total Environment, 852, 158515. https://doi.org/10.1016/j.scitotenv.2022.158515