Biocarbón: Importancia como alternativa para el desarrollo sostenible en Costa Rica. Una revisión bibliográfica

Contenido principal del artículo

Ricardo Enrique Ulate Molina
Federico Masís Meléndez
Karolina Villagra Mendoza

Resumen

Durante los últimos 20 años, se han implementado medidas con miras a un cambio en el modelo socioeconómico mundial, buscando un equilibrio entre las necesidades de producción y los recursos disponibles. En América Latina, el alcance de dicho equilibrio es todo un reto, al contar con una economía basada en la extracción de recursos naturales. Analizar el impacto de la producción y uso de biocarbón en América Latina y, específicamente en Costa Rica, como alternativa para la consecución de objetivos de desarrollo sostenible (ODS). Se hace una recopilación de 93 artículos acerca de la producción, uso e impacto de los biocarbones en América Latina. Se identifica el trabajo desarrollado con respecto a biocarbones en Costa Rica y se discute su relación con el cumplimiento de los ODS de industria, innovación e infraestructura, ciudades y comunidades sostenibles, producción y consumos responsables y acción por el clima, así como oportunidades para generar un mayor impacto en la sostenibilidad en el país. El uso de materiales carbonizados en América Latina ha tenido un crecimiento importante, y en Costa Rica ha logrado impactar de manera positiva en metas de los objetivos de desarrollo sostenible, en áreas relacionadas con producción agrícola, manejo de residuos y contaminación ambiental.

Detalles del artículo

Cómo citar
Ulate Molina , R. E., Masís Meléndez, F., & Villagra Mendoza , K. (2025). Biocarbón: Importancia como alternativa para el desarrollo sostenible en Costa Rica. Una revisión bibliográfica. E-Agronegocios, 11(1), 66–95. https://doi.org/10.18845/ea.v11i1.7568
Sección
Notas técnicas

Citas

Abarca-Guerrero, L., Maas, G., & Hogland, W. (2015). Desafíos en la gestión de residuos sólidos para las ciudades de países en desarrollo. Revista Tecnología En Marcha, 28(2), 141. https://doi.org/10.18845/tm.v28i2.2340

Ahmed, A. S. F., Vanga, S., & Raghavan, V. (2017). Global Bibliometric Analysis of the Research in Biochar. Journal of Agricultural & Food Information, 19(3), 228–236. https://doi.org/10.1080/10496505.2017.1403328

Alchouron, J., Navarathna, C., Rodrigo, P. M., Snyder, A., Chludil, H. D., Vega, A. S., Bosi, G., Perez, F., Mohan, D., Pittman Jr., C. U., & Mlsna, T. E. (2021). Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. Journal of Colloid and Interface Science, 587, 767–779. https://doi.org/10.1016/j.jcis.2020.11.036

Ameur, D., Zehetner, F., Johnen, S., Jöchlinger, L., Pardeller, G., Wimmer, B., Rosner, F., Faber, F., Dersch, G., Zechmeister-Boltenstern, S., Mentler, A., Soja, G., & Keiblinger, K. M. (2018). Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes. Pedobiologia, 69, 1–10. https://doi.org/10.1016/j.pedobi.2018.06.001

Antônio Tadeu Lucas, A., Iderlane de Freitas, M., Bispo dos Santos Farias, D., & Isidória Silva Gonzaga, M. (2017). Biochar use of assessment on soil moisture. Revista Brasileira de Agricultura Irrigada, 11(2), 1310–1314. https://doi.org/10.7127/rbai.v11n200611

Assureira, E., & Assureira, M. (2022). Transformación de las hojas de caña de azúcar en biocarbón para su uso como combustible y agente reductor en procesos de reducción directa de minerales de hierro. Información Tecnológica, 33(3), 51–66. https://doi.org/10.4067/s0718-07642022000300051

Balaguer-Benlliure, V., Moya, R., & Gaitán-Alvarez, J. (2021). Physical and Energy Characteristics, Compression Strength, and Chemical Modification of Charcoal Produced from Sixteen Tropical Woods in Costa Rica. Journal of Sustainable Forestry, 42(2), 151-169. . https://doi.org/10.1080/10549811.2021.1978096

Bartoli, M., Giorcelli, M., Jagdale, P., Rovere, M., & Tagliaferro, A. (2020). A Review of Non-Soil Biochar Applications. Materials, 13(2), Article 261. https://doi.org/10.3390/ma13020261

Bravo Medina, C. A., Alemán Pérez, R. D., Freile Almeida, J. A., Reyes Morán, H. F., Andino Inmunda, M. W., Alba Rojas, J. L., Lazo Pérez, Y., & Marino Ibarra, E. (2019). Evaluación del uso de un biocarbono sobre la absorción de cadmio del suelo y la productividad del cultivo de cacao (Theobroma cacao L.) en la Amazonía ecuatoriana. Revista Iberoamericana Ambiente & Sustentabilidad, 2(1), 6–15. https://doi.org/10.46380/rias.v2i1.33

Brewer, C. (2012). Biochar characterization and engineering [Tesis de Doctorado, Universidad de Iowa State]. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3291&context=etd

Burbano Salas, D. (2019). Uso del Kikuyo (Pennisetum Clandestinum L), residuo de la poda de áreas verdes para la obtención de ácido piroleñoso con fines agropecuarios. Ciencia Digital, 3(3.4.), 354–364. https://doi.orgc/10.33262/cienciadigital.v3i3.4..884

Bursztyn Fuentes, A. L., Canevesi, R. L. S., Gadonneix, P., Mathieu, S., Celzard, A., & Fierro, V. (2020). Paracetamol removal by Kon-Tiki kiln-derived biochar and activated carbons. Industrial Crops and Products, 155, Article 112740. https://doi.org/10.1016/j.indcrop.2020.112740

Cely, P., Gascó, G., Paz-Ferreiro, J., & Méndez, A. (2015). Agronomic properties of biochars from different manure wastes. Journal of Analytical and Applied Pyrolysis, 111, 173–182. https://doi.org/10.1016/j.jaap.2014.11.014

Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1,, 75–87. https://doi.org/10.1007/s42773-019-00008-3

Chin-Pampillo, J. S., Alfaro-Vargas, A., Rojas, R., Giacomelli, C. E., Perez-Villanueva, M., Chinchilla-Soto, C., Alcañiz, J. M., & Domene, X. (2020). Widespread tropical agrowastes as novel feedstocks for biochar production: characterization and priority environmental uses. Biomass Conversion and Biorefinery, 11, 1775–1785. https://doi.org/10.1007/s13399-020-00714-0

Chin-Pampillo, J. S., Perez-Villanueva, M., Masis-Mora, M., Mora-Dittel, T., Carazo-Rojas, E., Alcañiz, J. M., Chinchilla-Soto, C., & Domene, X. (2021). Amendments with pyrolyzed agrowastes change bromacil and diuron’s sorption and persistence in a tropical soil without modifying their environmental risk. Science of the Total Environment, 772, Article 145515. https://doi.org/10.1016/j.scitotenv.2021.145515

Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2013). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404. https://doi.org/10.1080/03650340.2013.789870

Cisneros, A. G., Fernandes, E. M., Rodríguez, R. M., & Lujano, J. (2018). Preparación de carbón activado a partir de residuos de torrefaccionado y de carbonizado alcalino de biomasa vegetal (Equisetum giganteum). Anales, 18(2), 139–155. http://ares.unimet.edu.ve/academic/revista/anales18.2/documentos/pag-139.pdf

Comisión Económica para América Latina y el Caribe. (2021). Construir un futuro mejor: acciones para fortalecer la Agenda 2030 para el Desarrollo Sostenible. (LC/FDS.4/3/Rev.1). https://www.cepal.org/es/publicaciones/46682-construir-un-futuro-mejor-acciones-fortalecer-la-agenda-2030-desarrollo

Concilco Alberto, E., Moreno Reséndez, A., García Carrillo, M., Quiroga Garza, H. M., & Ángel García, O. (2018). Influencia del biocarbón aplicado al suelo sobre atributos de rendimiento y calidad de avena forrajera. Revista Terra Latinoamericana, 36(3). https://doi.org/10.28940/terra.v36i3.375

Cornelissen, G., Pandit, N. R., Taylor, P., Pandit, B. H., Sparrevik, M., & Schmidt, H. P. (2016). Emissions and Char Quality of Flame-Curtain “Kon Tiki” Kilns for Farmer-Scale Charcoal/Biochar Production. PLOS ONE, 11(5), e0154617. https://doi.org/10.1371/journal.pone.0154617

Cunha, E. G. da, Guidinelle, R. B., Rangel, O. J. P., & Passos, R. R. (2021). Biochar and swine wastewater: Effects on soil fertility of different textures and corn nutrition. Revista Ceres, 68(6), 586–596. https://doi.org/10.1590/0034-737x202168060011

Das, O., & Sarmah, A. K. (2015). The love–hate relationship of pyrolysis biochar and water: A perspective. Science of the Total Environment, 512-513, 682–685. https://doi.org/10.1016/j.scitotenv.2015.01.061

Diaz Vento, I., Ancco, M., Peña Davila, G., Ancco-Loza, R., Davila Del-Carpio, G., & Jiménez Pacheco, H. G. (2022). Efectos del biocarbón obtenido a partir de residuos agrícolas de uva en la generación de biogás. Revista de Investigaciones Altoandinas – Journal of High Andean Research, 24(4), 278–288. https://doi.org/10.18271/ria.2022.423

Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36. https://doi.org/10.1007/s13593-016-0372-z

Dong, D., Li, J., Ying, S., Wu, J., Han, X., Teng, Y., Zhou, M., Ren, Y., & Jiang, P. (2021). Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Science of the Total Environment, 792, Article 148460. https://doi.org/10.1016/j.scitotenv.2021.148460

Food and Agriculture Organization and Intergovernmental Technical Panel on Soils. (2015). Status of the world’s soil resources;Main report. FAO. https://www.fao.org/soils-2015/resources/fao-publications/en/

Fawzy, S., Osman, A. I., Yang, H., Doran, J., & Rooney, D. W. (2021). Industrial biochar systems for atmospheric carbon removal: a review. Environmental Chemistry Letters, 19, 3023–3055. https://doi.org/10.1007/s10311-021-01210-1

Fernandes, J. D., Chaves, L. H. G., Dantas, E. R. B., Tito, G. A., & Guerra, H. O. C. (2022). Phosphorus availavility in soil incubated with biochar: Adsorption study. Revista Caatinga, 35(1), 206–215. https://doi.org/10.1590/1983-21252022v35n121rc

Figueredo, N. A. de, Costa, L. M. da, Melo, L. C. A., Siebeneichlerd, E. A., & Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica, 48(3), 395-403. https://doi.org/10.5935/1806-6690.20170046

Fischer, B. M. C., Morillas, L., Rojas Conejo, J., Sánchez-Murillo, R., Suárez Serrano, A., Frentress, J., Cheng, C.-H., Garcia, M., Manzoni, S., Johnson, M. S., & Lyon, S. W. (2020). Investigating the impacts of biochar on water fluxes in tropical agriculture using stable isotopes. Hydrology and Earth System Sciences . https://doi.org/10.5194/hess-2020-404

Gallego Ramírez, C., & Rubio Clemente, A. (2022). Remoción de colorantes en aguas procedentes de la industria textil mediante el uso de biocarbón. Afinidad. Journal of Chemical Engineering Theoretical and Applied Chemistry, 79(596). https://doi.org/10.55815/401287

García Serrano, E. (2020). Adaptaciones al Subsistema Nacional de Evaluación de Costa Rica a partir de los ODS. Cuadernos Del CLAEH, 39(112). https://doi.org/10.29192/claeh.39.2.5

Ghodake, G. S., Shinde, S. K., Kadam, A. A., Saratale, R. G., Saratale, G. D., Kumar, M., Palem, R. R., AL-Shwaiman, H. A., Elgorban, A. M., Syed, A., & Kim, D.-Y. (2021). Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, 297, Article 126645. https://doi.org/10.1016/j.jclepro.2021.126645

Gómez, X. (2003). Determinación del efecto del biocarbón en movilidad del mercurio en sistema suelo-planta. The Biologist, 15(1). https://doi.org/10.24039/rtb2017151137

Gonzaga, A., Rimaycuna, J., Cruz, G. J. F., Herrera, E. L., Gómez, M. M., Solis, J. L., Cruz, J. F., & Keiski, R. L. (2021). Removal of lead present in aqueous solutions using biochar produced from corn cob. Manglar, 18(1), 35–43. https://doi.org/10.17268/manglar.2021.005

Gross, C. D., Bork, E. W., Carlyle, C. N., & Chang, S. X. (2022). Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. Science of the Total Environment, 806, Article 151337. https://doi.org/10.1016/j.scitotenv.2021.151337

Grupo Banco Mundial. (20 de julio de 2022). Indicadores del desarrollo mundial [Archivo de Excel.]. Datos.bancomundial.org. https://datos.bancomundial.org/pais/costa-rica?view=chart

Gutiérrez, J., Rubio-Clemente, A., & Pérez, J. F. (2022). Analysis of biochars produced from the gasification of Pinus patula pellets and chips as soil amendments. Maderas. Ciencia Y Tecnología, 24(49). https://doi.org/10.4067/s0718-221x2022000100449

Gwenzi, W., Nyambishi, T. J., Chaukura, N., & Mapope, N. (2017). Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. International Journal of Environmental Science and Technology, 15(2), 405–414. https://doi.org/10.1007/s13762-017-1399-7

Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. https://doi.org/10.1007/s11368-019-02264-z

Heredia Salgado, M. A., Säumel, I., Cianferoni, A., & Tarelho, L. A. C. (2021). Potential for Farmers’ Cooperatives to Convert Coffee Husks into Biochar and Promote the Bioeconomy in the North Ecuadorian Amazon. Applied Sciences, 11(11), Aticle 4747. https://doi.org/10.3390/app11114747

Herrera, E., Feijoo, C., Alfaro, R., Solís, J., Gómez, M., Keiski, R., & Cruz, G. (2018). Biochar based on residual biomasses and its influence over seedling emergence and growth in vivarium of Capparis scabrida (Sapote). Scientia Agropecuaria, 9(4), 569–577. https://doi.org/10.17268/sci.agropecu.2018.04.13

Instituto Nacional de Estadística y Censos. (2020). Indicadores de seguimiento ODS 2019 TOMO II. Editorial del Instituto Nacional de Estadística y Censos, IBSN 978-9930-525-47-0. https://ods.cr/recursos/indicadores-de-seguimiento-ods-2019-tomo-ii

Intergovernmental Panel of Climate Change (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157926.001

Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x

Jaiswal, A. K., Elad, Y., Paudel, I., Graber, E. R., Cytryn, E., & Frenkel, O. (2017). Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Scientific Reports, 7. https://doi.org/10.1038/srep44382

Jeffery, S., Verheijen, F., van der Velde, M., & Bastos, A. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015

Jin, H., Köppl, C. J., Fischer, B. M. C., Rojas-Conejo, J., Johnson, M. S., Morillas, L., Lyon, S. W., Durán-Quesada, A. M., Suárez-Serrano, A., Manzoni, S., & Garcia, M. (2021). Drone-Based Hyperspectral and Thermal Imagery for Quantifying Upland Rice Productivity and Water Use Efficiency after Biochar Application. Remote Sensing, 13(10), Article 1866. https://doi.org/10.3390/rs13101866

Kamali, M., Appels, L., Kwon, E. E., Aminabhavi, T. M., & Dewil, R. (2021). Biochar in water and wastewater treatment – a sustainability assessment. Chemical Engineering Journal, 420, Article129946. https://doi.org/10.1016/j.cej.2021.129946

Kumar, A., & Bhattacharya, T. (2020). Biochar: a sustainable solution. Environment, Development and Sustainability, 23(5), 6642–6680. https://doi.org/10.1007/s10668-020-00970-0

Kumar, A., Schreiter, I. J., Wefer-Roehl, A., Tsechansky, L., Schüth, C., & Graber, E. R. (2016). Production and Utilization of Biochar From Organic Wastes for Pollutant Control on Contaminated Sites. Environmental Materials and Waste, 91–116. https://doi.org/10.1016/b978-0-12-803837-6.00005-6

Lahori, A. H., Guo, Z., Zhang, Z., Li, R., Mahar, A., Awasthi, M. K., Shen, F., Sial, T. A., Kumbhar, F., Wang, P., & Jiang, S. (2017). Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere, 27(6), 991–1014. https://doi.org/10.1016/s1002-0160(17)60490-9

Lehmann, J., & Joseph, S. (2012). Biochar for Environmental Management: Science and Technology. Taylor And Francis.

Leveau, M., Dumler, S., Anaya De La Rosa, R., Alegre, J., & Ladd, B. (2021). Uso de biocarbón en el balance de nitrógeno en suelos aluviales de San Ramón / Chanchamayo / Perú. Ecología Aplicada, 20(2), 179–188. https://doi.org/10.21704/rea.v20i2.1808

Li, S., Barreto, V., Li, R., Chen, G., & Hsieh, Y. P. (2018). Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 133, 136–146. https://doi.org/10.1016/j.jaap.2018.04.010

Li, X., Wang, T., Chang, S. X., Jiang, X., & Song, Y. (2020). Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Science of the Total Environment, 749, Article 141593. https://doi.org/10.1016/j.scitotenv.2020.141593

Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177(5), 651–670. https://doi.org/10.1002/jpln.201400058

Lozano Reátegui, R. M., Alegre Orihuela, J. C., Velazco Castro, E. V., Mendoza Carlos, M. M., & Nieto Iturri, W. G. (2021). Biocarbón de cáscaras de semilla de palma aceitera enriquecido en biol de estiércol para mejorar suelos sobre pastoreados. Llamkasun, 2(2), 15–37. https://doi.org/10.47797/llamkasun.v2i2.39

Manyari, F., & Valverde Flores, J. (2017). Use of vinasse and biocarbon to the remediation of saline – sodium soils in the district of Tambogrande, Piura. Journal of Energy & Environmental Sciences, 1(1), 23-33. https://doi.org/10.32829/eesj.v1i1.28

Marcińczyk, M., & Oleszczuk, P. (2022). Biochar and engineered biochar as slow- and controlled-release fertilizers. Journal of Cleaner Production, 339, Article 130685. https://doi.org/10.1016/j.jclepro.2022.130685

Marín Armijos, J., García Batista, R. M., & Barrezueta Unda, S. (2018). Elaboración de biocarbón obtenido a partir de la cáscara del cacao y raquis del banano. Revista Científica Agroecosistemas, 6(3), 75–81. https://aes.ucf.edu.cu/index.php/aes/article/view/221

Martínez C., M. J., España A., J. C., & Diaz V., J. D. J. (2017). Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agronomía Colombiana, 35(1), 75–81. https://doi.org/10.15446/agron.colomb.v35n1.58671

Masís-Meléndez, F., Segura-Chavarría, D., García-González, C. A., Quesada-Kimsey, J., & Villagra-Mendoza, K. (2020). Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars. Applied Sciences, 10(2), Article 507. https://doi.org/10.3390/app10020507

Melo, R. L. de, & Naval, L. P. (2023). Low-cost sorbent for removing glyphosate from aqueous solutions for non-potable reuse. Revista Ambiente & Água, 18, Article e2875. https://doi.org/10.4136/ambi-agua.2875

Milian-Luperón, L., Hernández-Rodríguez, M., Falcón-Hernández, J., & Otero-Calvis, A. (2020). Obtaining bioproducts by slow pyrolysis of coffee and cocoa husks as suitable candidates for being used as soil amendment and source of energy. Revista Colombiana de Química, 49(2), 23–29. https://doi.org/10.15446/rev.colomb.quim.v49n2.83231

Ministerio de Planificación Nacional y Política Económica (2022). ODS en Costa Rica | Objetivos de Desarrollo Sostenible. Objetivos de Desarrollo Sostenible En Costa Rica. https://ods.cr/ods-en-costa-rica

Miranda, N. D. O., Pimenta, A. S., Silva, G. G. C. D., Oliveira, E. M. M., & Carvalho, M. A. B. D. (2017). Biochar as soil conditioner in the succession of upland rice and cowpea fertilized with nitrogen. Revista Caatinga, 30(2), 313–323. https://doi.org/10.1590/1983-21252017v30n206rc

Mojiri, A., Zhou, J. L., Robinson, B., Ohashi, A., Ozaki, N., Kindaichi, T., Farraji, H., & Vakili, M. (2020). Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 253, Article 126646. https://doi.org/10.1016/j.chemosphere.2020.126646

Mondragón-Sánchez, A., Medina-Orozco, L. E., Sánchez-Duque, A., & Núñez-Oregel, V. (2021). Efecto de la aplicación de biocarbón en el rendimiento de maíz en Michoacán, México. Revista Tierra Latinoamericana, 39. https://doi.org/10.28940/terra.v39i0.896

Monteiro, A. B., Pereira, I. dos S., Bamberg, A. L., Stöcker, C. M., & Timm, L. C. (2020). Substrates for seedlings with sewage sludge and biochar. Revista Ceres, 67(6), 491–500. https://doi.org/10.1590/0034-737x202067060009

Mukherjee, A., & Lal, R. (2013). Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy, 3(2), 313–339. https://doi.org/10.3390/agronomy3020313

Narayanan, M., Kandasamy, G., Kandasamy, S., Natarajan, D., Devarayan, K., Alsehli, M., Elfasakhany, A., & Pugazhendhi, A. (2021). Water hyacinth biochar and Aspergillus niger biomass amalgamation potential in removal of pollutants from polluted lake water. Journal of Environmental Chemical Engineering, 9(4), Article 105574. https://doi.org/10.1016/j.jece.2021.105574

Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., Shaheen, S. M., Rinklebe, J., & Lüttge, A. (2018). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31–41. https://doi.org/10.1016/j.envpol.2017.09.051

Nsamba, H. K., Hale, S. E., Cornelissen, G., & Bachmann, R. T. (2015). Sustainable Technologies for Small-Scale Biochar Production—A Review. Journal of Sustainable Bioenergy Systems, 5(1), 10–31. https://doi.org/10.4236/jsbs.2015.51002

Organización de las Naciones Unidas (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible Una oportunidad para América Latina y el Caribe Objetivos, metas e indicadores mundiales. Naciones Unidas. https://www.cepal.org/es/publicaciones/40155-la-agenda-2030-objetivos-desarrollo-sostenible-oportunidad-america-latina-caribe

Organización Latinoamericana de Energía (2022). Panorama energético de América Latina y el Caribe 2022. In Organización Latinoamericana de Energía (pp. 133–140). Organización Latinoamericana de Energía. https://www.olade.org/publicaciones/panorama-energetico-de-america-latina-y-el-caribe-2021-2/

Orozco Gutiérrez, G., Medina Telez, L., Elvira Espinosa, A., & Cervantes Preciado, J. F. (2021). Biocarbón de bambú como mejorador de la fertilidad del suelo en caña de azúcar. Revista Mexicana de Ciencias Forestales, 12(65). https://doi.org/10.29298/rmcf.v12i65.780

Páez Vieyra, J. C. (2019). Agenda común sobre desarrollo sostenible en América Latina. InterNaciones, (18). https://doi.org/10.32870/in.v0i18.7149

Pariona-Palomino, J., Matos Ormeño, W., & Huillca Huanaco, E. (2020). Biochar como tecnología de emisión negativa frente al cambio climático. South Sustainability, 1(2). https://doi.org/10.21142/ss-0102-2020-014

Pérez-Cabrera, C. A., Juárez-López, P., Anzaldo-Hernández, J., Alia-Tejacal, I., Salcedo-Pérez, E., Guillén-Sánchez, D., Balois-Morales, R., López-Martínez, V., & Castro-Brindis, R. (2021). Caracterización química de biocarbón de ápices de caña de azúcar elaborado mediante carbonización hidrotérmica y adición de catalizadores orgánicos. Revista Terra Latinoamericana, 39. https://doi.org/10.28940/terra.v39i0.936

Pérez-Gómez, E. O., García-Rosales, G., Longoria-Gándara, L. C., & Gómez-Vilchis, J. C. (2022). Obtention of biochar-Ca nanoparticles using Citrus rasilien A morphological, surface and study remotion of Aflatoxin AFB1. Journal of Hazardous Materials, 424, Article 127339. https://doi.org/10.1016/j.jhazmat.2021.127339

Pérez-Salas, R. A., Tapia Fernández, A. C., Soto, G., & Benjamin, T. (2013). Efecto del Bio-carbón sobre Fusarium oxysporum f. sp. cubense y el desarrollo de plantas de banano (Musa AAA). InterSedes, 14(27). https://doi.org/10.15517/isucr.v14i27.10408

Preston, T. R. (2013). El papel del biocarbono en la sostenibilidad y competitividad de sistemas agropecuarios. Revista Colombiana de Ciencias Pecuarias, 304–312. https://www.redalyc.org/pdf/2950/295060031011.pdf

Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93. https://doi.org/10.1016/j.jenvman.2015.05.036

Quesada Kimzey, J. (2012). La carbonización de residuos biomásicos: una exploración con perspectivas emocionantes. Revista Tecnología En Marcha, 25(5), 14. https://doi.org/10.18845/tm.v25i5.465

Quesada-González, O., Cantos-Macías, M. A., Duharte-Rodríguez, W. L., Cascaret-Carmenaty, D. A., & Rodríguez-Matos, J. (2022). Biocarbones ecuatorianos con potencialidades energéticas. Revista Cubana de Química, 34(2), 285–302. https://cubanaquimica.uo.edu.cu/index.php/cq. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212022000200285&lng=pt&tlng=es

Quiroz-Mojica, L. J., Daza-Mendoza, M. M., Díaz-Muegue, L. C., Melo-Rios, A. E., & Peñuela-Mesa, G. A. (2021). Efecto de biochar, micorrizas arbusculares y Guazuma ulmifolia, en la rehabilitación de suelos mineros. Revista Terra Latinoamericana, 39. https://doi.org/10.28940/terra.v39i0.709

Quiroz-Mojica, L. J., Peñuela-Mesa, G. A., Diaz-Muegue, L. C., Martinez-Smit, C., & Bastidas-Barranco, M. J. (2022). Exergo-economic study of the process for obtaining biochar derived from oil palm kernel shell on an experimental and pilot scale. DYNA, 89(223), 133–140. https://doi.org/10.15446/dyna.v89n223.99359

Reddy, K. R., Xie, T., & Dastgheibi, S. (2014). Evaluation of Biochar as a Potential Filter Media for the Removal of Mixed Contaminants from Urban Storm Water Runoff. Journal of Environmental Engineering, 140(12). https://doi.org/10.1061/(asce)ee.1943-7870.0000872

Reyes Moreno, G., Darghan Contreras, A. E., & Ramírez Lesmes, D. A. (2019). Design of a surface response model to determine the optimal value for wood volume in Acacia mangium Willd, by applying different doses of biochar to the soil. DYNA, 86(211), 26–31. https://doi.org/10.15446/dyna.v86n211.78331

Reyes-Moreno, G., Cuervo-Andrade, J. L., Darghan-Contreras, A. E., & Cárdenas-Pardo, N. J. (2020). Impact of dry sludges and sludge biochar on height and dry matter of Solanum lycopersicum L. Agronomía Colombiana, 38(2), 242–252. https://doi.org/10.15446/agron.colomb.v38n2.81842

Rodríguez Solís, A., Badilla Valverde, Y., & Moya, R. (2021). Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery. Agronomy, 11(10), Article 2079. https://doi.org/10.3390/agronomy11102079

Rogovska, N., Laird, D., Cruse, R., Fleming, P., Parkin, T., & Meek, D. (2011). Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions. Soil Science Society of America Journal, 75(3), 871-879. https://doi.org/10.2136/sssaj2010.0270

Salgado, M. A. H., Tarelho, L. A. C., Matos, A., Robaina, M., Narváez, R., & Peralta, M. E. (2018). Thermoeconomic analysis of integrated production of biochar and process heat from quinoa and lupin residual biomass. Energy Policy, 114, 332–341. https://doi.org/10.1016/j.enpol.2017.12.014

Santos de Assis, W., Caldeira do Nascimento, E., D’Acunha, B., dos Santos Weber, O. L., Freire Gaspar Dores, E., & Guimarães Couto, E. (2021). Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agronomía Colombiana, 39(1), 37–46. https://doi.org/https://doi.org/10.15446/agron.colomb.v39n1.90918

Sarfaraz, Q., Silva, L. S. da, Drescher, G. L., Zafar, M., Severo, F. F., Kokkonen, A., Dal Molin, G., Shafi, M. I., Shafique, Q., & Solaiman, Z. M. (2020). Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-57987-8

Schmidt, H. P., Bucheli, T., Kammann, C., Glaser, B., Abiven, S., Leifeld, J., Soja, G., & Hagemann, N. (2022). Guidelines for a Sustainable Production of Biochar. In https://www.european-biochar.org (p. 10). European Biochar Foundation. https://www.european-biochar.org/media/doc/2/version_en_10_1.pdf

Schmidt, H., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Sánchez Monedero, M. A., & Cayuela, M. L. (2021). Biochar in agriculture – A systematic review of 26 global meta‐analyses. GCB-Bioenergy, 13(11), 1708–1730. https://doi.org/10.1111/gcbb.12889

Silva, M. S. A., Colen, F., Sampaio, R. A., Azevedo, A. M., Basílio, J. J. N., Cota, C. G., & Fernandes, L. A. (2022). Biochar from Caryocar rasiliense as a soil conditioner for common bean plants. Ciência Rural, 52(7). https://doi.org/10.1590/0103-8478cr20200871

Smith, P., Adams, J., Beerling, D. J., Beringer, T., Calvin, K. V., Fuss, S., Griscom, B., Hagemann, N., Kammann, C., Kraxner, F., Minx, J. C., Popp, A., Renforth, P., Vicente Vicente, J. L., & Keesstra, S. (2019). Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annual Review of Environment and Resources, 44, 255–286. https://doi.org/10.1146/annurev-environ-101718-033129

Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., & Nichols, K. A. (2012). Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. Journal of Environmental Quality, 41(4), 973–989. https://doi.org/10.2134/jeq2011.0069

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3

Velázquez Machuca, M. A., Equihua Soriano, J. R., Venegas González, J., Montañez Soto, J. L., Pimentel Equihua, J. L., & Muñoz Navia, M. (2019). Caracterización física y química de biochar de lodos residuales. Revista Terra Latinoamericana, 37(3), 243-251. https://doi.org/10.28940/terra.v37i3.409

Villagra-Mendoza, K., & Horn, R. (2018a). Effect of biochar on the unsaturated hydraulic conductivity of two amended soils. International Agrophysics, 32(3), 373–378. https://doi.org/10.1515/intag-2017-0025

Villagra-Mendoza, K., & Horn, R. (2018b). Effect of biochar addition on hydraulic functions of two textural soils. Geoderma, 326, 88–95. https://doi.org/10.1016/j.geoderma.2018.03.021

Villagra-Mendoza, K., & Horn, R. (2019). Changes in Water Infiltration after Simulated Wetting and Drying Periods in two Biochar Amendments. Soil Systems, 3(4), Article 63. https://doi.org/10.3390/soilsystems3040063

Villagra-Mendoza, K., Masís-Meléndez, F., Quesada-Kimsey, J., García-González, C. A., & Horn, R. (2021). Physicochemical Changes in Loam Soils Amended with Bamboo Biochar and Their Influence in Tomato Production Yield. Agronomy, 11(10), Article 2052. https://doi.org/10.3390/agronomy11102052

Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., Farrell, M., Hall, T., Yang, X., & Bolan, N. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621, 148–159. https://doi.org/10.1016/j.scitotenv.2017.11.214

Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., & Yu, X. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research, 127, 153–160. https://doi.org/10.1016/j.fcr.2011.11.020

Zhang, J., Shao, J., Jin, Q., Li, Z., Zhang, X., Chen, Y., Zhang, S., & Chen, H. (2019). Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel, 252, 101–108. https://doi.org/10.1016/j.fuel.2019.04.096

Artículos similares

1 2 3 4 5 6 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.