Incorporating strawberry leaf extract from waste biomass in prototype topical gel and cream formulations

Main Article Content

Karla Salas-Arias
Fabián Villalta-Romero
Randall Chacón-Cerdas
David Hidalgo-Paniagua
Laura Calvo-Castro

Abstract

Berry fruits are an important source of polyphenols with beneficial antioxidant properties for
human health. However, higher bioactive phytochemical content has been reported in berry
leaves, which are usually discarded or underutilized. In this study, a hydroalcoholic extract with
relevant polyphenol content obtained from strawberry leaves (Fragaria x ananassa cv. Festival),
an agro-industrial waste material, was incorporated in two commercial topical formulations
(aqueous gel and oil/water cream), in three concentrations of active ingredient (0.02, 0.1 and
1% strawberry leaf extract). The physicochemical properties of the formulations were monitored
for 45 days at different temperatures. Particle size and stability analysis showed that the creambased formulations were the most optimal for the development of a topical prototype with
potential bioactive activities.

Article Details

How to Cite
Salas-Arias, K., Villalta-Romero, F., Chacón-Cerdas, R., Hidalgo-Paniagua, D., & Calvo-Castro, L. (2024). Incorporating strawberry leaf extract from waste biomass in prototype topical gel and cream formulations. Tecnología En Marcha Journal, 37(9), Pág. 226–233. https://doi.org/10.18845/tm.v37i9.7626
Section
Artículo científico

References

K. Salas-Arias et al., “Strawberry Fragaria x ananassa cv. Festival: A Polyphenol-Based Phytochemical

Characterization in Fruit and Leaf Extracts,” Molecules, vol. 28, no. 4, p. 1865, 2023, doi: 10.3390/molecules28041865.

I. Fecka, K. Bednarska, and M. Włodarczyk, “Fragaria × ananassa cv. Senga Sengana Leaf: An Agricultural

Waste with Antiglycation Potential and High Content of Ellagitannins, Flavonols, and 2-Pyrone-4,6-dicarboxylic

Acid,” Molecules, vol. 27, no. 16, p. 5293, 2022, doi: 10.3390/molecules27165293.

A. Kårlund, K. Hanhineva, M. Lehtonen, G. J. McDougall, D. Stewartc, and R. O. Karjalainena, “Non-targeted

metabolite profiling highlights the potential of strawberry leaves as a resource for specific bioactive compounds,” J Sci Food Agric, vol. 97, no. 7, pp. 2182–2190, May 2017, doi: 10.1002/JSFA.8027.

L. P. Stanojević, M. Z. Stanković, D. J. Cvetković, M. D. Cakić, S. R. Savić, and M. D. Miljković, “Antioxidant

activity of strawberry (Fragaria × ananassa Duch.) leaves,” Sep Sci Technol, vol. 52, no. 6, pp. 1039–1051,

, doi: 10.1080/01496395.2017.1281305.

S. Afrin, T. Y. Forbes-Hernandez, F. Giampieri, M. Battino, and M. Gasparrini, “The photoprotective effects of

strawberry-based cosmetic formulations on human dermal fibroblasts,” Acta Hortic, vol. 1156, pp. 397–404,

, doi: 10.17660/ActaHortic.2017.1156.59.

M. Gasparrini et al., “A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations

on Human Dermal Fibroblasts,” Int J Mol Sci, vol. 16, pp. 17870–17884, 2015, doi: 10.3390/ijms160817870.

M. Gasparrini et al., “Strawberry-Based Cosmetic Formulations Protect Human Dermal Fibroblasts against

UVA-Induced Damage,” Nutrients, vol. 9, no. 6, p. 605, Jun. 2017, doi: 10.3390/nu9060605.

A. Markiewicz, M. Zasada, A. Erkiert-Polguj, M. Wieckowska-Szakiel, and E. Budzisz, “An evaluation of the antiaging properties of strawberry hydrolysate treatment enriched with L-ascorbic acid applied with microneedle

mesotherapy,” J Cosmet Dermatol, vol. 18, no. 1, pp. 129–135, 2019, doi: 10.1111/jocd.12545

A. Ziemlewska, Z. Nizioł-Lukaszewska, M. Zagórska-Dziok, T. Bujak, M. Wójciak, and I. Sowa, “Evaluation

of cosmetic and dermatological properties of kombucha-fermented berry leaf extracts considered to be byproducts,” Molecules, vol. 27, p. 2345, 2022, doi: https://doi.org/10.3390/molecules27072345.

D. F. Auliya, Suhartinah, and H. M. Ansory, “Potency and Stability Emulgel of Ethanol Extract Strawberry Leaf

(Fragaria x ananassa var Duchesne) as a Sunscreen,” Jurnal Majalah Farmaseutik, vol. 18, no. 4, p. 469, 2022,

doi: 10.22146/farmaseutik.v18i4.73909.

A. P. Silva, B. Rodrigues, L. Bonny, and Y. Manrique, “Strawberry Leaves Extract for Cosmetic Industry,”

U.Porto Journal of Engineering, vol. 8, no. 5, pp. 135–144, 2022, doi: 10.24840/2183-6493_008.005_0012.

L. A. Calvo-Castro et al., “Self-Emulsifying Micellization of Crude Extracts from Apple (Malus domestica cv.

Anna), Plum (Prunus domestica cv. Satsuma), and Guava (Psidium guajava L.) Fruits,” Molecules, vol. 28, no.

, p. 1297, Feb. 2023, doi: 10.3390/molecules28031297.

National Health Surveillance Agency, Cosmetic Products Stability Guide/National Health Sur- veillance.

Brasilia: ANVISA, 2005. Consultado: Feb. 01, 2024. [Online]: www.anvisa.gov.br

H. Jaster, G. D. Arend, K. Rezzadori, V. C. Chaves, F. H. Reginatto, and J. C. C. Petrus, “Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained

by block freeze concentration,” Food Research International, vol. 104, no. July 2017, pp. 119–125, 2018, doi:

1016/j.foodres.2017.10.006.

M. Elmowafy, “Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation,” Colloids Surf B Biointerfaces, vol. 203, p. 111748, Jul. 2021, doi: 10.1016/j.colsurfb.2021.111748.

M. Liu, M. Sharma, G. L. Lu, Z. Zhang, N. Yin, and J. Wen, “Full factorial design, physicochemical characterization, ex vivo investigation, and biological assessment of glutathione-loaded solid lipid nanoparticles for topical

application,” Int J Pharm, vol. 630, p. 122381, Jan. 2023, doi: 10.1016/j.ijpharm.2022.122381.

H. Xiang, S. Xu, W. Zhang, Y. Li, Y. Zhou, and X. Miao, “Skin permeation of curcumin nanocrystals: Effect of

particle size, delivery vehicles, and permeation enhancer,” Colloids Surf B Biointerfaces, vol. 224, p. 113203,

Apr. 2023, doi: 10.1016/j.colsurfb.2023.113203.

A. Ali et al., “Relationship between sensorial and physical characteristics of topical creams: A comparative

study on effects of excipients,” Int J Pharm, vol. 613, p. 121370, Feb. 2022, doi: 10.1016/j.ijpharm.2021.121370.

D. F. Evans and H. Wennerström, The Colloidal Domain – where physics, chemistry, biology and technology

meet, 2nd Edition. Wiley-VCH, USA, 1999. doi: 10.1515/arh-2001-0032.

R. Pool and P. G. Bolhuis, “The influence of micelle formation on the stability of colloid surfactant mixtures,”

Physical Chemistry Chemical Physics, vol. 12, no. 44, pp. 14789–14797, Nov. 2010, doi: 10.1039/c0cp00912a.

V. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of

nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, pp. 338–353, Feb. 2020,

doi: 10.3762/bjnano.11.25.

C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, “Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles,” Biomaterials, vol. 31, no. 13, pp. 3657–3666, May 2010, doi: 10.1016/j.

biomaterials.2010.01.065.

A. Vedadghavami, C. Zhang, and A. G. Bajpayee, “Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins,” Nano Today, vol. 34, Oct. 2020, doi: 10.1016/j.nantod.2020.100898.

Y. Ikeda, H. Nakamura, S. Ohsaki, and S. Watano, “Direct translocation of a negatively charged nanoparticle

across a negatively charged model cell membrane,” Physical Chemistry Chemical Physics, vol. 23, no. 17, pp.

–10599, May 2021, doi: 10.1039/d0cp06278b.

M. Lukić, I. Pantelić, and S. D. Savić, “Towards optimal pH of the skin and topical formulations: From the current

state of the art to tailored products,” Cosmetics, vol. 8, no. 69, Aug. 2021, doi: 10.3390/cosmetics8030069

Most read articles by the same author(s)

1 2 > >>