Reporte de Caso: detección y caracterización del virus del acucharamiento del tomate (TYLCV) en plantas de tomate del cantón de Sarchí, Costa Rica
Contenido principal del artículo
Resumen
El presente estudio se enfocó en investigar la presencia del virus del acucharamiento de la hoja
del tomate (TYLCV) en plantas de tomate en el cantón de Sarchí, Costa Rica. Se recolectaron
muestras de plantas con síntomas de la enfermedad, así como una muestra sin síntomas, y
se realizaron análisis moleculares y microscópicos para detectar y caracterizar el virus. Se
demostró la presencia del TYLCV en las muestras analizadas mediante PCR, y comparando
con otras secuencias mediante un BLAST y un árbol filogenético. Además, se observaron
diferencias en la gravedad de los síntomas entre las plantas expuestas al sol y a la sombra. En
el análisis por microscopía electrónica de transmisión, se identificaron síntomas citopatológicos
en los cloroplastos de las plantas infectadas, tales como deformación, presencia de gránulos de
almidón, y cambios en la estructura y organización de los tilacoides. Estos hallazgos confirman
la presencia del TYLCV en los cultivos de tomate analizados. Estos resultados pueden ser de
utilidad para los agricultores y científicos que buscan desarrollar estrategias de manejo y control
de esta enfermedad en los cultivos de tomate en Costa Rica.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
I. N. de E. y C. INEC, “Encuesta Nacional Agropecuaria 2019 RESULTADOS GENERALES DE LA ACTIVIDAD
AGRÍCOLA Y FORESTAL,” San José, Costa Rica, Sep. 2020. Accessed: Jul. 16, 2024. [Online]. Available:
https://admin.inec.cr/sites/default/files/media/reena-cultivos2019_2.pdf
I. N. de E. y C. INEC, “Encuesta Nacional Agropecuaria 2022 RESULTADOS GENERALES DE LA ACTIVIDAD
AGRÍCOLA Y FORESTAL,” San José, Costa Rica, Sep. 2023. Accessed: Jul. 16, 2024. [Online]. Available:
https://admin.inec.cr/sites/default/files/2023-10/reagropecENAPECUARIO2022-01.pdf
M. Blanco-Meneses, O. Castro-Zúñiga, and A. Calderón-Abarca, “Diagnóstico del uso de antibióticos en
regiones productoras de tomate en Costa Rica,” Agronomía costarricense: Revista de ciencias agrícolas, vol.
, no. 1, pp. 87-99, Feb. 2023, doi: 10.15517/RAC.V47I1.53967.
L. M. López-Marín, Manual técnico del cultivo del tomate Solanum lycopersicum, 1era ed., vol. 01. San José,
Costa Rica: Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA), 2017.
Accessed: Jul. 14, 2024. [Online]. Available: https://repositorio.iica.int/handle/11324/3143
C. Ramírez-Vargas and J. Nienhuis, “Cultivo protegido de hortalizas en Costa Rica,” Revista Tecnología en
Marcha, vol. 25, no. 2, p. pág. 10-20, Aug. 2012, doi: 10.18845/tm.v25i2.303.
F. E. Martínez-Ruiz, L. Cervantes-Díaz, C. E. Aíl-Catzím, L. G. Hernández-Montiel, C. L. D. T. Sánchez, and E.
O. Rueda-Puente, “Hongos Fitopatógenos Asociados Al Tomate (Solanum Lycopersicum L.) En La Zona Árida
Del Noroeste De México: La Importancia De Su Diagnóstico,” European Scientific Journal, ESJ, vol. 12, no. 18,
pp. 232–232, Jun. 2016, doi: 10.19044/ESJ.2016.V12N18P232.
N. Barboza, M. Blanco-Meneses, P. Esker, E. Moriones, and A. K. Inoue-Nagata, “Distribution and diversity of
begomoviruses in tomato and sweet pepper plants in Costa Rica,” Annals of Applied Biology, vol. 172, no. 1,
pp. 20–32, Jan. 2018, doi: 10.1111/AAB.12398.
R. S. Ramos, L. Kumar, F. Shabani, and M. C. Picanço, “Risk of spread of tomato yellow leaf curl virus (TYLCV)
in tomato crops under various climate change scenarios,” Agric Syst, vol. 173, pp. 524–535, Jul. 2019, doi:
1016/J.AGSY.2019.03.020.
A. H. El-Sappah et al., “Natural resistance of tomato plants to Tomato yellow leaf curl virus,” Front Plant Sci,
vol. 13, no. 1, p. 1081549, Dec. 2022, doi: 10.3389/FPLS.2022.1081549/BIBTEX.
M. R. Maliano, M. R. Rojas, M. A. Macedo, N. Barboza, and R. L. Gilbertson, “The invasion biology of tomato
begomoviruses in Costa Rica reveals neutral synergism that may lead to increased disease pressure and
economic loss,” Virus Res, vol. 317, p. 198793, Aug. 2022, doi: 10.1016/J.VIRUSRES.2022.198793.
K. Valverde-Méndez, E. J. Hernández, D. Matamoros, and N. Barboza, “Begomovirus diversity in tomato crops
in Costa Rica,” Annals of Applied Biology, vol. 183, no. 3, pp. 231–243, Nov. 2023, doi: 10.1111/AAB.12850.
A. Varsani et al., “Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus
and Turncurtovirus,” Arch Virol, vol. 159, no. 8, pp. 2193–2203, Mar. 2014, doi: 10.1007/S00705-014-2050-2/
FIGURES/4.
A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, “Family - Geminiviridae,” in Virus Taxonomy,
vol. 01, A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Eds., Elsevier, 2012, pp. 351–373. doi:
1016/B978-0-12-384684-6.00035-5.
N. Barboza, M. Blanco-Meneses, M. Hallwass, E. Moriones, and A. K. Inoue-Nagata, “First Report of Tomato
yellow leaf curl virus in Tomato in Costa Rica,” https://doi.org/10.1094/PDIS-08-13-0881-PDN, vol. 98, no. 5, p.
, Apr. 2014, doi: 10.1094/PDIS-08-13-0881-PDN.
N. Barboza et al., “Achievements in the epidemiology of begomoviruses and their vector Bemisia tabaci in
Costa Rica,” Rev Biol Trop, vol. 67, no. 3, pp. 419–453, Jun. 2019, doi: 10.15517/RBT.V67I3.33457
L. Hilje and P. A. Stansly, “Preferencia de hospedantes por dos biotipos de Bemisia tabaci en Costa Rica y
Florida,” Agronomía Mesoamericana, vol. 29, no. 3, pp. 585–595, 2018, doi: 10.15517/MA.V29I3.311742.
E. Moriones and J. Navas-Castillo, “Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide,” Virus Res, vol. 71, no. 1–2, pp. 123–134, Nov. 2000, doi: 10.1016/S0168-1702(00)00193-3.
W. Ning et al., “Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex
and Biotype,” Scientific Reports 2015 5:1, vol. 5, no. 1, pp. 1–8, May 2015, doi: 10.1038/srep10744.
A. Prasad, N. Sharma, G. Hari-Gowthem, M. Muthamilarasan, and M. Prasad, “Tomato Yellow Leaf Curl
Virus: Impact, Challenges, and Management,” Trends Plant Sci, vol. 25, no. 9, pp. 897–911, Sep. 2020, doi:
1016/J.TPLANTS.2020.03.015.
M. K. Nakhla, A. Sorensen, D. P. Maxwell, L. Mejía, P. Ramírez, and J. P. Karkashian, “Molecular characterization of tomato-infecting begomoviruses in central America and development of DNA-based detection
methods,” Acta Hortic, vol. 695, pp. 277–288, 2005, doi: 10.17660/ACTAHORTIC.2005.695.31.
C. A. Parral, “Virus de la cuchara amenaza producción de tomate del país,” Portal de la InvestigaciónVicerrectoría de Investigación UCR. Accessed: Jul. 16, 2024. [Online]. Available: https://vinv.ucr.ac.cr/es/
noticias/virus-de-la-cuchara-amenaza-produccion-de-tomate-del-pais.
P. Mora-Vargas, “Nuevo tipo de tomate podría salvar hasta un 75 % de las cosechas,” Portal de la
Investigación-Vicerrectoría de Investigación UCR. Accessed: Jul. 16, 2024. [Online]. Available: https://www.
ucr.ac.cr/noticias/2023/12/12/nuevo-tipo-de-tomate-podria-salvar-hasta-un-75-de-las-cosechas.html.
S. L. Van Brunschot, D. M. Persley, A. D. W. Geering, P. R. Campbell, and J. E. Thomas, “Tomato yellow leaf
curl virus in Australia: Distribution, detection and discovery of naturally occurring defective DNA molecules,”
Australasian Plant Pathology, vol. 39, no. 5, pp. 412–423, 2010, doi: 10.1071/AP10083/METRICS.
Y. Xie, X. Jiao, X. Zhou, H. Liu, Y. Ni, and J. Wu, “Highly sensitive serological methods for detecting tomato yellow leaf curl virus in tomato plants and whiteflies,” Virol J, vol. 10, no. 1, pp. 1–9, May 2013, doi:
1186/1743-422X-10-142/FIGURES/9.
L. Alvarado-Marchena, C. Alvarado-Ulloa, R. Chacón Cerdas, A. Schmidt-Durán, and D. Flores-Mora, “Viral
clearance for three varieties of Ficus carica L. infected with the Fig Mosaic Virus (FMV),” Plant Cell Biotechnol
Mol Biol, vol. 18, no. 7–8, pp. 395–408, Oct. 2017, Accessed: Jul. 14, 2024. [Online]. Available: https://ikprress.
org/index.php/PCBMB/article/view/1727/1630
J. Park, E. J. Kil, J. Kim, Y. G. Shin, N. Y. Heo, and S. Lee, “Rapid Detection and Identification of Six Tomato
yellow leaf curl virus Isolates from Different Regions Using Polymerase Chain Reaction and Restriction Enzyme
Analysis,” Journal of Phytopathology, vol. 162, no. 4, pp. 209–217, Apr. 2014, doi: 10.1111/JPH.12172.
X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly Program,” Genome Res, vol. 9, no. 9, pp.
–877, Sep. 1999, doi: 10.1101/GR.9.9.868.
M. R. Hosseinzadeh, M. Shams-Bakhsh, S. K. Osaloo, and J. K. Brown, “Phylogenetic relationships, recombination analysis, and genetic variability among diverse variants of tomato yellow leaf curl virus in Iran and the
Arabian Peninsula: Further support for a TYLCV center of diversity,” Arch Virol, vol. 159, no. 3, pp. 485–497,
Mar. 2014, doi: 10.1007/S00705-013-1851-Z/TABLES/4.
K. Tamura, G. Stecher, and S. Kumar, “MEGA11: Molecular Evolutionary Genetics Analysis Version 11,” Mol
Biol Evol, vol. 38, no. 7, pp. 3022–3027, Jun. 2021, doi: 10.1093/MOLBEV/MSAB120.
K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Mol Biol Evol, vol. 10, no. 3, pp. 512–526, 1993, doi: 10.1093/
OXFORDJOURNALS.MOLBEV.A040023.
G. P. Accotto, J. Navas-Castillo, E. Noris, E. Moriones, and D. Louro, “Typing of tomato yellow leaf curl viruses
in Europe,” Eur J Plant Pathol, vol. 106, no. 2, pp. 179–186, 2000, doi: 10.1023/A:1008736023293/METRICS.
A. Fanigliulo et al., “Analysis of the spatial spread of two Begomoviruses, TYLCV and TYLCSV, in tomato hydroponics in Calabria region, Italy,” Acta Hortic, vol. 789, pp. 127–132, 2008, doi: 10.17660/
ACTAHORTIC.2008.789.16.
I. Fekih-Hassan et al., “Detection of Tomato yellow leaf curl Sardinia virus in Tunisia,” EPPO Bulletin, vol. 33,
no. 2, pp. 347–350, Aug. 2003, doi: 10.1046/J.1365-2338.2003.00646.X.
A. A. Hasan and A. M. Mouhanna, “Efficiency of transmission of Tomato yellow leaf curl virus using single leaflet
grafting,” Damascus University Journal of agriculture sciences, vol. 39, no. 1, pp. 1–12, Mar. 2022.
A. Ghandi et al., “Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–13, Jan. 2016, doi: 10.1038/srep19715.
A. Singh and I. K. Singh, “Molecular aspects of plant-pathogen interaction,” Molecular Aspects of PlantPathogen Interaction, pp. 1–351, Feb. 2018, doi: 10.1007/978-981-10-7371-7/COVER.
J. Zhao, X. Zhang, Y. Hong, and Y. Liu, “Chloroplast in plant-virus interaction,” Front Microbiol, vol. 7, no. OCT,
p. 219889, Oct. 2016, doi: 10.3389/FMICB.2016.01565/BIBTEX.
B. Krenz, J. R. Thompson, M. Fuchs, and K. L. Perry, “Complete Genome Sequence of a New Circular DNA
Virus from Grapevine,” J Virol, vol. 86, no. 14, pp. 7715–7715, Jul. 2012, doi: 10.1128/JVI.00943-12.
T. G. Shibaeva, E. G. Sherudilo, E. Ikkonen, A. A. Rubaeva, I. A. Levkin, and A. F. Titov, “Effects of Extended
Light/Dark Cycles on Solanaceae Plants,” Plants 2024, Vol. 13, Page 244, vol. 13, no. 2, p. 244, Jan. 2024, doi:
3390/PLANTS13020244.
R. Gorovits, I. Sobol, M. Altaleb, H. Czosnek, and G. Anfoka, “Taking advantage of a pathogen: understanding
how a virus alleviates plant stress response,” Phytopathology Research, vol. 1, no. 1, pp. 1–6, Dec. 2019, doi:
1186/S42483-019-0028-4/FIGURES/2.
T. Jiang et al., “Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms.,” Cell Rep, vol. 42, no. 4, pp. 112333–112333, Apr. 2023, doi: 10.1016/J.CELREP.2023.112333.
T. Nusayr, “The role of heat-shock proteins, in vector-virus transmission,” in Applied Plant Virology: Advances,
Detection, and Antiviral Strategies, 01 ed., vol. 01, L. P. Awasthi, Ed., Academic Press, 2020, pp. 249–254. doi:
1016/B978-0-12-818654-1.00019-0.
R. Gorovits, A. Moshe, M. Ghanim, and H. Czosnek, “Recruitment of the Host Plant Heat Shock Protein 70 by
Tomato Yellow Leaf Curl Virus Coat Protein Is Required for Virus Infection,” PLoS One, vol. 8, no. 7, p. e70280,
Jul. 2013, doi: 10.1371/JOURNAL.PONE.0070280.
B. C. Reagan and T. M. Burch-Smith, “Viruses reveal the secrets of plasmodesmal cell biology,” Molecular
Plant-Microbe Interactions, vol. 33, no. 1, pp. 26–39, Nov. 2020, doi: 10.1094/MPMI-07-19-0212-FI/ASSET/
IMAGES/LARGE/MPMI-07-19-0212-FI_F1.JPEG.
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: Molecular Evolutionary
Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods,” Mol
Biol Evol, vol. 28, no. 10, pp. 2731–2739, Oct. 2011, doi: 10.1093/MOLBEV/MSR121.
F. Péréfarres et al., “Occurrence of the Israel strain of Tomato yellow leaf curl virus in New Caledonia and
Loyalty Islands,” New Dis Rep, vol. 25, no. 1, pp. 6–6, Jan. 2012, doi: 10.5197/J.2044-0588.2012.025.006