Case Report: detection and characterization of the tomato yellow leaf curl virus (TYLCV) in tomato plants from Sarchí, Costa Rica

Main Article Content

Alexadra Castro-Estrada
Estefanía Chavarría-Jiménez
Mareling García-Madrigal
Verónica Ramos-Salazar
Elsie Gorostiola-Martínez
Randall Chacón-Cerdas
Luis Alvarado-Marchena

Abstract

The present study focused on investigating the presence of tomato yellow leaf curl virus (TYLCV)
in tomato plants in Sarchí, Costa Rica. Samples from plants with symptoms of the disease, as
well as a sample without symptoms, were collected, and molecular and microscopic analysis
were performed to detect and characterize the virus. The results confirmed the presence of
TYLCV in the analyzed samples by PCR amplification and by comparison with other sequences
using a BLAST and a phylogenetic tree. In addition, differences in the severity of symptoms were
observed between plants exposed to sun or in the shade. Cytopathological symptoms were
identified by transmission electron microscopy in the chloroplasts of infected plants, such as
deformation, presence of starch granules, and changes in the thylakoid structure. These findings
confirm the presence of TYLCV in the tomato crops analyzed in this study. These results may be
useful for farmers and scientists seeking to develop management and control strategies for this
disease in tomato crops in Costa Rica. 

Article Details

How to Cite
Castro-Estrada, A., Chavarría-Jiménez, E., García-Madrigal, M., Ramos-Salazar, V., Gorostiola-Martínez, E., Chacón-Cerdas, R., & Alvarado-Marchena, L. (2024). Case Report: detection and characterization of the tomato yellow leaf curl virus (TYLCV) in tomato plants from Sarchí, Costa Rica. Tecnología En Marcha Journal, 37(9), Pág. 161–175. https://doi.org/10.18845/tm.v37i9.7621
Section
Artículo científico

References

I. N. de E. y C. INEC, “Encuesta Nacional Agropecuaria 2019 RESULTADOS GENERALES DE LA ACTIVIDAD

AGRÍCOLA Y FORESTAL,” San José, Costa Rica, Sep. 2020. Accessed: Jul. 16, 2024. [Online]. Available:

https://admin.inec.cr/sites/default/files/media/reena-cultivos2019_2.pdf

I. N. de E. y C. INEC, “Encuesta Nacional Agropecuaria 2022 RESULTADOS GENERALES DE LA ACTIVIDAD

AGRÍCOLA Y FORESTAL,” San José, Costa Rica, Sep. 2023. Accessed: Jul. 16, 2024. [Online]. Available:

https://admin.inec.cr/sites/default/files/2023-10/reagropecENAPECUARIO2022-01.pdf

M. Blanco-Meneses, O. Castro-Zúñiga, and A. Calderón-Abarca, “Diagnóstico del uso de antibióticos en

regiones productoras de tomate en Costa Rica,” Agronomía costarricense: Revista de ciencias agrícolas, vol.

, no. 1, pp. 87-99, Feb. 2023, doi: 10.15517/RAC.V47I1.53967.

L. M. López-Marín, Manual técnico del cultivo del tomate Solanum lycopersicum, 1era ed., vol. 01. San José,

Costa Rica: Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA), 2017.

Accessed: Jul. 14, 2024. [Online]. Available: https://repositorio.iica.int/handle/11324/3143

C. Ramírez-Vargas and J. Nienhuis, “Cultivo protegido de hortalizas en Costa Rica,” Revista Tecnología en

Marcha, vol. 25, no. 2, p. pág. 10-20, Aug. 2012, doi: 10.18845/tm.v25i2.303.

F. E. Martínez-Ruiz, L. Cervantes-Díaz, C. E. Aíl-Catzím, L. G. Hernández-Montiel, C. L. D. T. Sánchez, and E.

O. Rueda-Puente, “Hongos Fitopatógenos Asociados Al Tomate (Solanum Lycopersicum L.) En La Zona Árida

Del Noroeste De México: La Importancia De Su Diagnóstico,” European Scientific Journal, ESJ, vol. 12, no. 18,

pp. 232–232, Jun. 2016, doi: 10.19044/ESJ.2016.V12N18P232.

N. Barboza, M. Blanco-Meneses, P. Esker, E. Moriones, and A. K. Inoue-Nagata, “Distribution and diversity of

begomoviruses in tomato and sweet pepper plants in Costa Rica,” Annals of Applied Biology, vol. 172, no. 1,

pp. 20–32, Jan. 2018, doi: 10.1111/AAB.12398.

R. S. Ramos, L. Kumar, F. Shabani, and M. C. Picanço, “Risk of spread of tomato yellow leaf curl virus (TYLCV)

in tomato crops under various climate change scenarios,” Agric Syst, vol. 173, pp. 524–535, Jul. 2019, doi:

1016/J.AGSY.2019.03.020.

A. H. El-Sappah et al., “Natural resistance of tomato plants to Tomato yellow leaf curl virus,” Front Plant Sci,

vol. 13, no. 1, p. 1081549, Dec. 2022, doi: 10.3389/FPLS.2022.1081549/BIBTEX.

M. R. Maliano, M. R. Rojas, M. A. Macedo, N. Barboza, and R. L. Gilbertson, “The invasion biology of tomato

begomoviruses in Costa Rica reveals neutral synergism that may lead to increased disease pressure and

economic loss,” Virus Res, vol. 317, p. 198793, Aug. 2022, doi: 10.1016/J.VIRUSRES.2022.198793.

K. Valverde-Méndez, E. J. Hernández, D. Matamoros, and N. Barboza, “Begomovirus diversity in tomato crops

in Costa Rica,” Annals of Applied Biology, vol. 183, no. 3, pp. 231–243, Nov. 2023, doi: 10.1111/AAB.12850.

A. Varsani et al., “Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus

and Turncurtovirus,” Arch Virol, vol. 159, no. 8, pp. 2193–2203, Mar. 2014, doi: 10.1007/S00705-014-2050-2/

FIGURES/4.

A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, “Family - Geminiviridae,” in Virus Taxonomy,

vol. 01, A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Eds., Elsevier, 2012, pp. 351–373. doi:

1016/B978-0-12-384684-6.00035-5.

N. Barboza, M. Blanco-Meneses, M. Hallwass, E. Moriones, and A. K. Inoue-Nagata, “First Report of Tomato

yellow leaf curl virus in Tomato in Costa Rica,” https://doi.org/10.1094/PDIS-08-13-0881-PDN, vol. 98, no. 5, p.

, Apr. 2014, doi: 10.1094/PDIS-08-13-0881-PDN.

N. Barboza et al., “Achievements in the epidemiology of begomoviruses and their vector Bemisia tabaci in

Costa Rica,” Rev Biol Trop, vol. 67, no. 3, pp. 419–453, Jun. 2019, doi: 10.15517/RBT.V67I3.33457

L. Hilje and P. A. Stansly, “Preferencia de hospedantes por dos biotipos de Bemisia tabaci en Costa Rica y

Florida,” Agronomía Mesoamericana, vol. 29, no. 3, pp. 585–595, 2018, doi: 10.15517/MA.V29I3.311742.

E. Moriones and J. Navas-Castillo, “Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide,” Virus Res, vol. 71, no. 1–2, pp. 123–134, Nov. 2000, doi: 10.1016/S0168-1702(00)00193-3.

W. Ning et al., “Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex

and Biotype,” Scientific Reports 2015 5:1, vol. 5, no. 1, pp. 1–8, May 2015, doi: 10.1038/srep10744.

A. Prasad, N. Sharma, G. Hari-Gowthem, M. Muthamilarasan, and M. Prasad, “Tomato Yellow Leaf Curl

Virus: Impact, Challenges, and Management,” Trends Plant Sci, vol. 25, no. 9, pp. 897–911, Sep. 2020, doi:

1016/J.TPLANTS.2020.03.015.

M. K. Nakhla, A. Sorensen, D. P. Maxwell, L. Mejía, P. Ramírez, and J. P. Karkashian, “Molecular characterization of tomato-infecting begomoviruses in central America and development of DNA-based detection

methods,” Acta Hortic, vol. 695, pp. 277–288, 2005, doi: 10.17660/ACTAHORTIC.2005.695.31.

C. A. Parral, “Virus de la cuchara amenaza producción de tomate del país,” Portal de la InvestigaciónVicerrectoría de Investigación UCR. Accessed: Jul. 16, 2024. [Online]. Available: https://vinv.ucr.ac.cr/es/

noticias/virus-de-la-cuchara-amenaza-produccion-de-tomate-del-pais.

P. Mora-Vargas, “Nuevo tipo de tomate podría salvar hasta un 75 % de las cosechas,” Portal de la

Investigación-Vicerrectoría de Investigación UCR. Accessed: Jul. 16, 2024. [Online]. Available: https://www.

ucr.ac.cr/noticias/2023/12/12/nuevo-tipo-de-tomate-podria-salvar-hasta-un-75-de-las-cosechas.html.

S. L. Van Brunschot, D. M. Persley, A. D. W. Geering, P. R. Campbell, and J. E. Thomas, “Tomato yellow leaf

curl virus in Australia: Distribution, detection and discovery of naturally occurring defective DNA molecules,”

Australasian Plant Pathology, vol. 39, no. 5, pp. 412–423, 2010, doi: 10.1071/AP10083/METRICS.

Y. Xie, X. Jiao, X. Zhou, H. Liu, Y. Ni, and J. Wu, “Highly sensitive serological methods for detecting tomato yellow leaf curl virus in tomato plants and whiteflies,” Virol J, vol. 10, no. 1, pp. 1–9, May 2013, doi:

1186/1743-422X-10-142/FIGURES/9.

L. Alvarado-Marchena, C. Alvarado-Ulloa, R. Chacón Cerdas, A. Schmidt-Durán, and D. Flores-Mora, “Viral

clearance for three varieties of Ficus carica L. infected with the Fig Mosaic Virus (FMV),” Plant Cell Biotechnol

Mol Biol, vol. 18, no. 7–8, pp. 395–408, Oct. 2017, Accessed: Jul. 14, 2024. [Online]. Available: https://ikprress.

org/index.php/PCBMB/article/view/1727/1630

J. Park, E. J. Kil, J. Kim, Y. G. Shin, N. Y. Heo, and S. Lee, “Rapid Detection and Identification of Six Tomato

yellow leaf curl virus Isolates from Different Regions Using Polymerase Chain Reaction and Restriction Enzyme

Analysis,” Journal of Phytopathology, vol. 162, no. 4, pp. 209–217, Apr. 2014, doi: 10.1111/JPH.12172.

X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly Program,” Genome Res, vol. 9, no. 9, pp.

–877, Sep. 1999, doi: 10.1101/GR.9.9.868.

M. R. Hosseinzadeh, M. Shams-Bakhsh, S. K. Osaloo, and J. K. Brown, “Phylogenetic relationships, recombination analysis, and genetic variability among diverse variants of tomato yellow leaf curl virus in Iran and the

Arabian Peninsula: Further support for a TYLCV center of diversity,” Arch Virol, vol. 159, no. 3, pp. 485–497,

Mar. 2014, doi: 10.1007/S00705-013-1851-Z/TABLES/4.

K. Tamura, G. Stecher, and S. Kumar, “MEGA11: Molecular Evolutionary Genetics Analysis Version 11,” Mol

Biol Evol, vol. 38, no. 7, pp. 3022–3027, Jun. 2021, doi: 10.1093/MOLBEV/MSAB120.

K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Mol Biol Evol, vol. 10, no. 3, pp. 512–526, 1993, doi: 10.1093/

OXFORDJOURNALS.MOLBEV.A040023.

G. P. Accotto, J. Navas-Castillo, E. Noris, E. Moriones, and D. Louro, “Typing of tomato yellow leaf curl viruses

in Europe,” Eur J Plant Pathol, vol. 106, no. 2, pp. 179–186, 2000, doi: 10.1023/A:1008736023293/METRICS.

A. Fanigliulo et al., “Analysis of the spatial spread of two Begomoviruses, TYLCV and TYLCSV, in tomato hydroponics in Calabria region, Italy,” Acta Hortic, vol. 789, pp. 127–132, 2008, doi: 10.17660/

ACTAHORTIC.2008.789.16.

I. Fekih-Hassan et al., “Detection of Tomato yellow leaf curl Sardinia virus in Tunisia,” EPPO Bulletin, vol. 33,

no. 2, pp. 347–350, Aug. 2003, doi: 10.1046/J.1365-2338.2003.00646.X.

A. A. Hasan and A. M. Mouhanna, “Efficiency of transmission of Tomato yellow leaf curl virus using single leaflet

grafting,” Damascus University Journal of agriculture sciences, vol. 39, no. 1, pp. 1–12, Mar. 2022.

A. Ghandi et al., “Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–13, Jan. 2016, doi: 10.1038/srep19715.

A. Singh and I. K. Singh, “Molecular aspects of plant-pathogen interaction,” Molecular Aspects of PlantPathogen Interaction, pp. 1–351, Feb. 2018, doi: 10.1007/978-981-10-7371-7/COVER.

J. Zhao, X. Zhang, Y. Hong, and Y. Liu, “Chloroplast in plant-virus interaction,” Front Microbiol, vol. 7, no. OCT,

p. 219889, Oct. 2016, doi: 10.3389/FMICB.2016.01565/BIBTEX.

B. Krenz, J. R. Thompson, M. Fuchs, and K. L. Perry, “Complete Genome Sequence of a New Circular DNA

Virus from Grapevine,” J Virol, vol. 86, no. 14, pp. 7715–7715, Jul. 2012, doi: 10.1128/JVI.00943-12.

T. G. Shibaeva, E. G. Sherudilo, E. Ikkonen, A. A. Rubaeva, I. A. Levkin, and A. F. Titov, “Effects of Extended

Light/Dark Cycles on Solanaceae Plants,” Plants 2024, Vol. 13, Page 244, vol. 13, no. 2, p. 244, Jan. 2024, doi:

3390/PLANTS13020244.

R. Gorovits, I. Sobol, M. Altaleb, H. Czosnek, and G. Anfoka, “Taking advantage of a pathogen: understanding

how a virus alleviates plant stress response,” Phytopathology Research, vol. 1, no. 1, pp. 1–6, Dec. 2019, doi:

1186/S42483-019-0028-4/FIGURES/2.

T. Jiang et al., “Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms.,” Cell Rep, vol. 42, no. 4, pp. 112333–112333, Apr. 2023, doi: 10.1016/J.CELREP.2023.112333.

T. Nusayr, “The role of heat-shock proteins, in vector-virus transmission,” in Applied Plant Virology: Advances,

Detection, and Antiviral Strategies, 01 ed., vol. 01, L. P. Awasthi, Ed., Academic Press, 2020, pp. 249–254. doi:

1016/B978-0-12-818654-1.00019-0.

R. Gorovits, A. Moshe, M. Ghanim, and H. Czosnek, “Recruitment of the Host Plant Heat Shock Protein 70 by

Tomato Yellow Leaf Curl Virus Coat Protein Is Required for Virus Infection,” PLoS One, vol. 8, no. 7, p. e70280,

Jul. 2013, doi: 10.1371/JOURNAL.PONE.0070280.

B. C. Reagan and T. M. Burch-Smith, “Viruses reveal the secrets of plasmodesmal cell biology,” Molecular

Plant-Microbe Interactions, vol. 33, no. 1, pp. 26–39, Nov. 2020, doi: 10.1094/MPMI-07-19-0212-FI/ASSET/

IMAGES/LARGE/MPMI-07-19-0212-FI_F1.JPEG.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: Molecular Evolutionary

Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods,” Mol

Biol Evol, vol. 28, no. 10, pp. 2731–2739, Oct. 2011, doi: 10.1093/MOLBEV/MSR121.

F. Péréfarres et al., “Occurrence of the Israel strain of Tomato yellow leaf curl virus in New Caledonia and

Loyalty Islands,” New Dis Rep, vol. 25, no. 1, pp. 6–6, Jan. 2012, doi: 10.5197/J.2044-0588.2012.025.006

Most read articles by the same author(s)