Evaluación preclínica de un ventilador mecánico de bajo costo
Contenido principal del artículo
Resumen
La pandemia de COVID-19 provocada por la infección del virus SARS-CoV-2 colocó en crisis
los sistemas de salud del mundo debido a la escasez de materiales, dispositivos y equipos
de ventilación de emergencia para las unidades de cuidados intensivos (UCI). El diseño de
dispositivos de ventilación de bajo costo surgió como una opción necesaria para los países con
recursos limitados para satisfacer las demandas críticas de equipos respiratorios. En el Instituto
Tecnológico de Costa Rica (ITCR) se desarrolló un prototipo de ventilador mecánico (TECVentilador) que reunió las siguientes características: capacidad de 250-800 mL de ventilación
con incrementos controlados de 50 mL, frecuencia respiratoria de 10 a 30 respiraciones/min,
relación Inspiración:Espiración variable de 1:1 a 1:5, y una fracción inspirada de oxígeno
(FiO2
) de 21-70%. Se evaluó la seguridad y efectividad del dispositivo en un estudio preclínico
con ocho cerdos inducidos con una lesión pulmonar aguda, de los cuales siete reunieron las
condiciones para la evaluación del desempeño del ventilador. Se comparó su rendimiento con
el de un ventilador comercial control mediante el análisis estadístico de la variación de los
parámetros de O2
SAT, pO2
, pCO2
, pH, HCO3
-
, exceso de base, presión arterial media (PAM),
frecuencia respiratoria (RESP) y frecuencia cardíaca (HR); encontrándose que el ventilador
TEC proporcionó estabilidad de parámetros equivalentes comparado con el control comercial.
Se encontró además que el ventilador TEC no causó complicaciones y manejó eficazmente la
insuficiencia respiratoria en el 100% de los sujetos evaluados.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
O. Peñuelas et al., “Long-term survival of mechanically ventilated patients with severe COVID-19: an observational cohort study,” Ann Intensive Care, vol. 11, no. 1, pp. 1–11, Dec. 2021, doi: 10.1186/S13613-021-
-Y/TABLES/2.
WHO, “WHO, 2022,” WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard
With Vaccination Data. Accessed: Sep. 28, 2022. [Online]. Available: https://covid19.who.int/
V. P. Chavda, A. B. Patel, and D. D. Vaghasiya, “SARS-CoV-2 variants and vulnerability at the global level,” J
Med Virol, vol. 94, no. 7, pp. 2986–3005, Jul. 2022, doi: 10.1002/JMV.27717.
A. Vallatos et al., “Adaptive Manufacturing for Healthcare During the COVID-19 Emergency and Beyond,” Front
Med Technol, vol. 3:702556, pp. 1–18, Aug. 2021, doi: 10.3389/FMEDT.2021.702526.
M. Dar, L. Swamy, D. Gavin, and A. Theodore, “Mechanical-Ventilation Supply and Options for the COVID-19
Pandemic Leveraging All Available Resources for a Limited Resource in a Crisis,” Ann Am Thorac Soc, vol. 18,
no. 3, pp. 408–416, Mar. 2021, doi: 10.1513/ANNALSATS.202004-317CME/SUPPL_FILE/DISCLOSURES.PDF.
J. M. Pearce, “A review of open source ventilators for COVID-19 and future pandemics,” F1000Res, vol. 9: 218,
pp. 1–29, April. 2020, doi: 10.12688/F1000RESEARCH.22942.2.
R. Beale et al., “OxVent: Design and evaluation of a rapidly-manufactured Covid-19 ventilator,” EBioMedicine,
vol. 76:103868, pp. 1–12, Feb. 2022, doi: 10.1016/j.ebiom.2022.103868.
A. Ruiz-Barquero et al., “Design and implementation of a controlled low-cost ventilator for emergency use
on ICU patients,” Revista Tecnología en Marcha, vol. 37, no. 3, pp. 178–191, Jun. 2024, doi: 10.18845/
tm.v37i3.6838.
K. Portier and K. K. Ida, “The ASA physical status classification: What is the evidence for recommending its
use in veterinary anesthesia?-A systematic review,” Frontiers in Veterinary Science, vol. 5: 204, pp. 1–15, Aug.
, doi: 10.3389/fvets.2018.00204.
M. Daabiss, “American Society of Anaesthesiologists Physical Status Classification,” Indian Journal of
Anaesthesia, vol. 55, no. 2. pp. 111–115, Mar. 2011. doi: 10.4103/0019-5049.79879.[11] B. K. Peterson,
Chapter 22 - “Vital Signs.,” in Physical Rehabilitation: Evidence-Based Examination, Evaluation, and
Intervention, ed., M. H. Cameron, and L. G. Monroe, Ed., St Louis: Saunders Elsevier, Jan. 2007, pp. 598–624,
doi: 10.1016/B978-072160361-2.50025-9.
E. R. Johnson and M. A. Matthay, “Acute Lung Injury: Epidemiology, Pathogenesis, and Treatment,” J Aerosol
Med Pulm Drug Deliv, vol. 23, no. 4, pp. 243–252, Aug. 2010, doi: 10.1089/JAMP.2009.0775.
L. Li, Q. Huang, D. C. Wang, D. H. Ingbar, and X. Wang, “Acute lung injury in patients with COVID‐19 infection,”
Clin Transl Med, vol. 10, no. 1, pp. 20–27, Mar. 2020, doi: 10.1002/CTM2.16.
H. B. Alam, B. Austin, E. Koustova, and P. Rhee, “Resuscitation-induced pulmonary apoptosis and intracellular
adhesion molecule-1 expression in rats are attenuated by the use of Ketone Ringer’s solution,” J Am Coll Surg,
vol. 193, no. 3, pp. 255–263, Sep. 2001, doi: 10.1016/S1072-7515(01)01004-3.
L. Chimenti et al., “Comparison of direct and indirect models of early induced acute lung injury,” Intensive Care
Medicine Experimental, vol. 8, no. 1, pp. 1–13, Dec. 2020, doi: 10.1186/S40635-020-00350-Y/FIGURES/5.
G. Matute-Bello, C. W. Frevert, and T. R. Martin, “Animal models of acute lung injury,” Am J Physiol Lung Cell
Mol Physiol, vol. 295, no. 3, pp. L379–L399, Sep. 2008, doi: 10.1152/ajplung.00010.2008.
Minitab LLC, “Minitab Statistical Software.” 2019. Available from: https://www.minitab.com.
E. G. F. Biteli et al., “Blood gas analysis in pigs submitted to different concentrations of nitrous oxide or oxygen,
under different ventilatory modalities,” Arq Bras Med Vet Zootec, vol. 71, no. 1, pp. 35–43, Jan. 2019, doi:
1590/1678-4162-10210.
A. Lervik, S. F. Toverud, R. Krontveit, and H. A. Haga, “A comparison of respiratory function in pigs anaesthetised by propofol or alfaxalone in combination with dexmedetomidine and ketamine,” Acta Vet Scand, vol. 62:14,
no. 1, pp. 1–9, Mar. 2020, doi: 10.1186/s13028-020-0512-y.
P. D. Wagner, “The physiological basis of pulmonary gas exchange: Implications for clinical interpretation of arterial blood gases,” European Respiratory Journal, vol. 45, no. 1, pp. 227–243, Jan. 2015, doi:
1183/09031936.00039214.
F. Formenti et al., “Respiratory oscillations in alveolar oxygen tension measured in arterial blood,” Sci Rep, vol.
:7499, no. 1, pp. 1–10, Dec. 2017, doi: 10.1038/s41598-017-06975-6.
R. S. Syring, C. M. Otto, R. E. Spivack, K. Markstaller, and J. E. Baumgardner, “Maintenance of end-expiratory
recruitment with increased respiratory rate after saline-lavage lung injury,” J Appl Physiol, vol. 102, no. 1, pp.331–339, Jan. 2007, doi: 10.1152/JAPPLPHYSIOL.00002.2006/ASSET/IMAGES/LARGE/ZDG0010769610006.
JPEG.
B. S. Nassar and G. A. Schmidt, “Estimating arterial partial pressure of carbon dioxide in ventilated patients:
How valid are surrogate measures?,” Annals of the American Thoracic Society, vol. 14, no. 6. American
Thoracic Society, pp. 1005–1014, Jun. 01, 2017. doi: 10.1513/AnnalsATS.201701-034FR.
H. J. Adrogué and N. E. Madias, “Secondary responses to altered acid-base status: The rules of engagement,” Journal of the American Society of Nephrology, vol. 21, no. 6. pp. 920–923, Jun. 2010. doi: 10.1681/
ASN.2009121211.
J. Fierstra, M. MacHina, A. Battisti-Charbonney, J. Duffin, J. A. Fisher, and L. Minkovich, “End-inspiratory
rebreathing reduces the endtidal to arterial PCO 2 gradient in mechanically ventilated pigs,” Intensive Care
Med, vol. 37, no. 9, pp. 1543–1550, Sep. 2011, doi: 10.1007/s00134-011-2260-y.
W. Aoi and Y. Marunaka, “Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of
Membrane Proton Transport,” BioMed Research International, vol. 2014:598986, pp. 1–8, Sept. 2014. doi:
1155/2014/598986.
E. D. Barros and C. D. Rojas, “Valores de electrolitos, gases sanguíneos, nitrógeno ureico y glucosa en sangre
venosa de caninos, ubicados a 2.600 msnm,” Rev Med Vet (Bogota), vol. 1, no. 16, pp. 53–61, Jan. 2008,
Accessed: May 15, 2022. [Online]. Available: https://ciencia.lasalle.edu.co/mv/vol1/iss16/8
E. N. Robinson, “Cap 52. Homeostasis acidobásica. Sección IX: Homeostasis.,” in Cunningham Fisiología
Veterinaria, 5ta ed., B. G. Klein, Ed., Barcelona: Elsevier España S.L, 2014, pp. 549–554.
R. Galera, L. Gómez Carrera, and B. Ortega, “Respiratory tract diseases,” Medicine, vol. 10, no. 63, pp.
–4331, 2010, doi: 10.1016/S0304-5412(10)70241-9.
T. Sánchez and I. Concha, “Estructura y Funciones del Sistema Respiratorio,” Neumología Pediátrica, vol. 13,
no. 3, pp. 101–106, Jan. 2018, doi: 10.51451/NP.V13I3.212.
E. Cordat and J. R. Casey, “Bicarbonate transport in cell physiology and disease,” Biochemical Journal, vol.
, no. 2, pp. 423–439, Jan. 2009, doi: 10.1042/BJ20081634.
G. P. Burns, “Arterial blood gases made easy,” Clinical Medicine, vol. 14, no. 01, pp. 66–68, Feb. 2014, doi:
7861/clinmedicine.14-1-66.
L. Gattinoni and E. Carlesso, “Arterial and Venous Blood Gases,” in Critical Care Nephrology, 2nd ed., C.
Ronco, R. Bellomo, and J. A. Kellum, Eds., Philadelphia, USA: W.B. Saunders, 2009, pp. 607–611. doi:
1016/B978-1-4160-4252-5.50121-0.
K. Berend, “Diagnostic Use of Base Excess in Acid–Base Disorders,” New England Journal of Medicine, vol.
, no. 15, pp. 1419–1428, Apr. 2018, doi: 10.1056/nejmra1711860.
S. C. Gale, J. F. Kocik, R. Creath, J. S. Crystal, and V. Y. Dombrovskiy, “A comparison of initial lactate and
initial base deficit as predictors of mortality after severe blunt trauma,” Journal of Surgical Research, vol. 205,
no. 2, pp. 446–455, Oct. 2016, doi: 10.1016/j.jss.2016.06.103.
I. Smith et al., “Base excess and lactate as prognostic indicators for patients admitted to intensive care,”
Intensive Care Med, vol. 27, no. 1, pp. 74–83, Jan. 2001, doi: 10.1007/S001340051352.
J. Qi, L. Bao, P. Yang, and D. Chen, “Comparison of base excess, lactate and pH predicting 72-h mortality of
multiple trauma,” BMC Emerg Med, vol. 21:80, no. 1, pp. 1–7, Dec. 2021, doi: 10.1186/s12873-021-00465-9.
M. Garcia-Alvarez, P. Marik, and R. Bellomo, “Sepsis-associated hyperlactatemia,” Critical Care, vol. 18:503,
no. 5, pp. 1–11, Sep. 09, 2014. doi: 10.1186/s13054-014-0503-3.
R. B. Stephenson, “Cap 22. Circulaciones pulmonar y sistémica. 213-221 pp. Sección III: Fisiología
Cardiovascular.,” in Cunningham Fisiología Veterinaria, 5ta ed., B. G. Klein, Ed., Barcelona: Elsevier España
S.L, 2014, pp. 213–221.
C. Roussos and A. Koutsoukou, “Respiratory failure,” European Respiratory Journal, vol. 22, no. Supplement
, pp. 3s–14s, Nov. 2003, doi: 10.1183/09031936.03.000038503.
M. A. López Centeno, G. Ruiz Ripstein, M. Ramírez Ruíz, and A. Arce Ruelas, “Investigación en Salud,”
Investigación en Salud, vol. 6, no. 1, pp. 11–13, 2004, Accessed: May 15, 2022. [Online]. Available: http://www.
redalyc.org/articulo.oa?id=14260103
S. Rolfe, “The importance of respiratory rate monitoring,” British Journal of Nursing, vol. 28, no. 8, pp. 504–508,
April 2019, Accessed: May 15, 2024. [Online]. Available: https://www.britishjournalofnursing.com/content/clinical/the-importance-of-respiratory-rate-monitoring/
M. A. López Centeno, G. Ruiz Ripstein, M. Ramírez Ruíz, and A. Arce Ruelas, “Investigación en Salud,”
Investigación en Salud, vol. 6, no. 1, pp. 11–13, 2004, Accessed: May 15, 2022. [Online]. Available: http://www.
redalyc.org/articulo.oa?id=14260103
S. Rolfe, “The importance of respiratory rate monitoring,” British Journal of Nursing, vol. 28, no. 8, pp. 504–508,
April 2019, Accessed: May 15, 2024. [Online]. Available: https://www.britishjournalofnursing.com/content/clinical/the-importance-of-respiratory-rate-monitoring/
E. N. Robinson, “Cap 45. Visión General de la función respiratoria. Sección VIII: Función Respiratoria.,” in
Cunningham Fisiología Veterinaria, 5ta ed., B. G. Klein, Ed., Barcelona: Elsevier España S.L, 2014, pp. 495–
J. Dolenšek, F. Runovc, and M. Kordaš, “Simulation of pulmonary ventilation and its control by negative feedback,” Comput Biol Med, vol. 35, no. 3, pp. 217–228, Mar. 2005, doi: 10.1016/J.COMPBIOMED.2004.02.002.
C. Pereira-Barbosa, H. Dohmeier, J. Kunczik, N. Hochhausen, R. Tolba, and M. Czaplik, “Contactless monitoring of heart and respiratory rate in anesthetized pigs using infrared thermography,” PLoS One, vol. 14, no. 11,
pp. 1–12, Nov. 2019, doi: 10.1371/journal.pone.0224747.
Y. Kasahara, C. Yoshida, M. Saito, and Y. Kimura, “Assessments of Heart Rate and Sympathetic and
Parasympathetic Nervous Activities of Normal Mouse Fetuses at Different Stages of Fetal Development Using
Fetal Electrocardiography,” Front Physiol, vol. 12:652828, pp. 1–7, Apr. 2021, doi: 10.3389/fphys.2021.652828.
I. Álvarez-Ramírez and L. E. Cruz-Martínez, “Fisiología cardiovascular aplicada en caninos con insuficiencia
cardiaca,” Rev Med Vet (Bogota), vol. 21, pp. 115–132, Jan/June. 2011, Accessed: May 15, 2022. [Online].
Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-93542011000100009
R. B. Stephenson, “Cap 21. El corazón como bomba. Sección III: Fisiología Cardiovascular.,” in Cunningham
Fisiología Veterinaria, 5ta ed., Barcelona: Elsevier España S.L, 2014, pp. 200–209.
F. Barré-Sinoussi and X. Montagutelli, “Animal models are essential to biological research: issues and perspectives,” Future Sci OA, vol. 1, no. 4:FSO63, pp. 1–3, Jul. 2015, doi: 10.4155/FSO.15.63.
A. Hernándiz et al., “Estudio comparativo de los cambios funcionales y estructurales producidos en un modelo
porcino de infarto de miocardio agudo y crónico,” Arch Cardiol Mex, vol. 86, no. 1, pp. 64–74, Jan. 2016, doi:
1016/J.ACMX.2015.09.009.
D. G. Hackam, “Translating animal research into clinical benefit,” BMJ : British Medical Journal, vol. 334, no.
, p. 163, Jan. 2007, doi: 10.1136/BMJ.39104.362951.80.
L. Fernández-Trujillo et al., “El biomodelo porcino en la investigación médica traslacional: del biomodelo al
humano en trasplante pulmonar,” Biomédica, vol. 39, no. 2, pp. 300–313, Jun. 2019, doi: 10.7705/BIOMEDICA.
V39I3.3820.
V. Ghorani, M. H. Boskabady, M. R. Khazdair, and M. Kianmeher, “Experimental animal models for COPD: a
methodological review,” Tob Induc Dis, vol. 15, no. 25, pp. 1–13, May 2017, doi: 10.1186/S12971-017-0130-2