Experimental comparison of cup anemometers

Main Article Content

Maximino Jiménez-Ceciliano
Gustavo Richmond-Navarro

Abstract

Since wind power is proportional to the cube of wind speed, wind speed usually becomes the most critical factor in determining the power of a wind turbine. Therefore, the uncertainty related to anemometers has been thoroughly investigated, seeking to decrease the error involved in the measurement. This work determines whether a group of commercial cup anemometers has means that do not differ statistically from each other, using different wind tunnels and a hot-wire anemometer to measure the reference velocity. In some scenarios, a linear relationship is found between the reference measurement and the cup anemometers one, with a correction factor depending on the wind speed. In other cases, there were atypical behaviors, which vary from one speed to another. It is assumed that external factors must cause the described abnormal behaviors. This assumption is reinforced by analyzing the variance and performing Tukey comparisons for the anemometers at different speeds. In other scenarios, it was found that, despite obtaining means that are not statistically equal, the group of anemometers delivered results in a range that falls within the stated uncertainty for the equipment. It is concluded that the results obtained are not sufficient to determine if the anemometers are statistically equivalent or not, but it is possible to observe that none of the analyzed equipment presents an error level that distinguishes it from the rest.

Article Details

How to Cite
Jiménez-Ceciliano, M., & Richmond-Navarro, G. (2024). Experimental comparison of cup anemometers. Tecnología En Marcha Journal, 37(1), Pág. 65–76. https://doi.org/10.18845/tm.v37i1.6620
Section
Artículo científico

References

C. Washburn y Romero M.Pablo, «Measures to promote renewable energies for electricity generation in LatinAmerican countries,» Energy Policy, vol. 128, pp. 212-222, 2019. https://doi.org/10.1016/j.enpol.2018.12.059

IRENA, «IRENA International Renewable Energy Agency,» 2020. [En línea]. Available: https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Technologies. [Último acceso: 18 June 2020].

R. V. Coquilla, J. Obermeier y B. R. White, «Calibration Procedures and Uncertainty in Wind,» WIND ENGINEERING, vol. 31, nº 5, 2007. https://doi.org/10.1260/030952407783418720

International Standard, «IEC-61400-12-1. Wind Turbines. Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines,» p. Annex F “Cup anemometer calibration procedure", 2005-2012.

E. R. Millan, J. Cubas y S. Pindado, «Studies on Cup Anemometer Performances Carried out at IDR/UPM Institute. Past and Present Research,» Energies, 2017. https://doi.org/10.3390/en10111860

E. Lydia, K. Suresh, I. Selvakumar y Prem KumarEdwin, «Wind resource estimation using wind speed and power curve models,» Renewable Energy, vol. 83, pp. 425-434, 2015. https://doi.org/10.1016/j.renene.2015.04.045

J. Kjellin, F. Bülow, S. Eriksson, P. Deglaire, M. Leijon y H. Bernhoff, «Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine,» Renewable Energy, vol. 36, pp. 3050-3053, 2011. https://doi.org/10.1016/j.renene.2011.03.031

S. Pindado, A. Sanz y A. Wery, «Deviation of Cup and Propeller Anemometer Calibration Results with Air Density,» Energies, 2012. https://doi.org/10.3390/en5030683

H. Ole, S. Ole y K. Leif, «Wind tunnel calibration of cup anemometers,» de WINDPOWER 2012 Conference, Atlanta, 2012.

S. Pindado, J. Cubas y F. Sorribes, «The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute,» Sensors, 2014. https://doi.org/10.3390/s141121418

L. Fernando y R. Duro, «A virtual instrument for automatic anemometer calibration with ANN based,» IEEE Transactions on Instrumentation and Measurement, 2003. https://doi.org/10.1109/TIM.2003.814703

NRGSystems, «NRGSystems Solar and Wind Solutions,» 23 April 2015. [En línea]. Available: https://www.nrgsystems.com/news-media/u-s-based-wind-tunnel-achieves-measnet-certification. [Último acceso: 22 June 2021].

WIND, «WIND Ammonit Wind Tunnel,» [En línea]. Available: https://ammonit-windtunnel.com/kalibrierung-und-klassifizierung-von-anemometern/. [Último acceso: 22 June 2021].

L. Bilir, M. Imir, Y. Devrim y A. Albostan, «An investigation on wind energy potential and small scale wind turbine performance at _Incek region – Ankara, Turkey,» Energy Conversion and Management, vol. 103, pp. 910-923, 2015. https://doi.org/10.1016/j.enconman.2015.07.017

H. Gutiérrez Pulido y R. De la Vara Salazar, «Análisis y diseño de dxperimentos,» México, Mc Graw Hill, 2008, p. 545.

A. Bowen, N. Zakay y Ives R, «The field performance of a remote 10 kW wind turbine,» Renewable Energy, vol. 28, nº 1, pp. 13-33, 2003. https://doi.org/10.1016/S0960-1481(02)00011-3

J. B. Barlow y W. H. Rae Jr, «Low speed wind tunnel testing,» INCAS Bulletin, vol. 7, nº 1, p. 133, 2015.

Most read articles by the same author(s)

1 2 > >>