Simulation of the Central American interconnected electrical system using ETAP

Main Article Content

Gustavo Adolfo Gómez-Ramírez
Gonzalo Mora-Jiménez
Carlos Meza

Abstract

The Central American Countries Electric Interconnection System (SIEPAC) has been an engine of development for the region. From its establishment the benefits have been substantial, showing socio-economic advances of great importance for the area’s inhabitants. This article shows a modeling of the Regional Electric System (SER) to carry out power flow studies using the ETAP (Electrical Transient Analyzer Program) software. As far as the authors are aware, there is only one model of the Central American regional system using PSS/E (Power System Simulator for Engineering). In this article, various scenarios were simulated and analyzed, varied and different operating conditions such as winter and summer in maximum, medium and minimum load and generation are considered. The power grid studied is more than 2150 bus that covers all the countries: Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica and Panama. Comparing the results of power flows between ETAP and PSS/E, satisfactory results were obtained since the variations were less than 0.5% between the power flows among countries. In this way, the results of ETAP were validated under the same conditions of analysis. As a conclusion, for academic or research purposes, the Central American interconnection power system can be simulated using the ETAP software, instead of PSS/E, which is the one used nowadays by the Central American network operators.

Article Details

How to Cite
Gómez-Ramírez, G. A., Mora-Jiménez, G., & Meza, C. (2023). Simulation of the Central American interconnected electrical system using ETAP. Tecnología En Marcha Journal, 36(2), Pág. 50–58. https://doi.org/10.18845/tm.v36i2.6007
Section
Artículo científico

References

C. E. Fallas Saborío, “Sistema de Interconexión Eléctrica para los Países de América Central: Una historia exitosa de colaboración e integración regional”. Gestión Documentación e Información GEDI-ICE, 2014.

C. Meza, “A review on the Central America Electrical Energy Scenario”, Renewable and Sustainable Energy Reviews, vol. 33, pp. 566–577, 2014. doi.org/10.1016/j.rser.2014.02.022

M. A. Lazo Vega, “Centroamérica y el cambio climático: De la planificación a la acción,” Realidad y Reflexión, 2020 Año. 20, N° 51, p71-101, 2020. http://hdl.handle.net/11592/9461

G. A. Gómez-Ramírez, C. Meza, y S. Morales-Hernández, “Oportunidades y desafíos para la integración de almacenamiento electroquímico en las redes eléctricas centroamericanas”, Tecnología en Marcha, vol. 34, n.º 3, pp. Pág. 70–82, jun. 2021. doi.org/10.18845/tm.v34i3.5352

CEPAL, “Estadísticas de producción de electricidad de los países del sistema de la integración centroamericana (SICA): datos preliminares a 2020,” 2020. https://hdl.handle.net/11362/47019

EOR, “Tomo I: Planificación de largo plazo de la generación y la transmisión regional correspondiente al período 2019-2028,” 2019.

EOR, “Tomo II: Planificación de largo plazo de la generación y la transmisión regional correspondiente al período 2019-2028,” 2019.

Gómez-Ramírez, Gustavo Adolfo. "Evolución y tendencias de índices de confiabilidad en sistemas eléctricos de potencia." Revista Tecnología en Marcha 29.2 (2016): 3-13. doi.org/10.18845/tm.v29i2.2687

Cresta, M., Gatta, F. M., Geri, A., Maccioni, M., & Paulucci, M. (2021). “Resilience Assessment in Distribution Grids: A Complete Simulation Model. Energies”, 14(14), 4303. doi.org/10.3390/en14144303

Mohamad, F., & Teh, J. (2018). “Impacts of energy storage system on power system reliability: A systematic review”. Energies, 11(7), 1749. doi.org/10.3390/en11071749

Sharma, N., & Sankar, S. (2018, September). “Modeling and control of battery energy storage system for providing grid support services”. In 2018 Clemson University Power Systems Conference (PSC) (pp. 1-5). IEEE. doi.org/ 10.1109/PSC.2018.8664018

Zhou, A., Yan, R., & Saha, T. K. (2019). “Capacity and control strategy design of isolated micro-grid with high renewable penetration”. IEEE Transactions on Sustainable Energy, 11(3), 1173-1184. doi.org/ 10.1109/TSTE.2019.2920274

Sperstad, I. B., Istad, M., Sæle, H., Korpås, M., Oleinikova, I., Hänninen, S. & Marinelli, M. (2020, October). “Cost-Benefit Analysis of Battery Energy Storage in Electric Power Grids: Research and Practices”. In 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) (pp. 314-318). IEEE. doi.org/ 10.1109/ISGT-Europe47291.2020.9248895

Zhu, Y., Liu, C., Sun, K., Shi, D., & Wang, Z. (2018). “Optimization of battery energy storage to improve power system oscillation damping”. IEEE Transactions on Sustainable Energy, 10(3), 1015-1024. doi.org/ 10.1109/TSTE.2018.2858262

L. Bam and W. Jewell, "Review: power system analysis software tools," IEEE Power Engineering Society General Meeting, 2005, 2005, pp. 139-144 Vol. 1, doi: 10.1109/PES.2005.1489097. doi.org/ 10.1109/PES.2005.1489097

Y. Kumar, V. K. Devabhaktuni and S. Vemuru, "Comparison of power system simulation tools with load flow study cases," 2015 IEEE International Conference on Electro/Information Technology (EIT), 2015, pp. 290-294, doi: 10.1109/EIT.2015.7293355. doi.org/ 10.1109/EIT.2015.7293355

P. Selvan and R. Anita, “Revelation for New User to Select Power System Simulation Software”, 5003, vol. 1, no. 7, pp. 366–375, Nov. 2011. https://archive.aessweb.com/index.php/5003/article/view/3308

N. Hutcheon and J. W. Bialek, "Updated and validated power flow model of the main continental European transmission network," 2013 IEEE Grenoble Conference, 2013, pp. 1-5, doi: 10.1109/PTC.2013.6652178. doi.org/ 10.1109/PTC.2013.6652178

Most read articles by the same author(s)