Desafíos del Almacenamiento en Grandes Sistemas de Potencia
Contenido principal del artículo
Resumen
La generación eléctrica basada en combustibles fósiles contribuye a la contaminación del aire en el mundo. En este sentido, el almacenamiento proporciona una posibilidad de reducir las emisiones especialmente si se combina con la energía solar y la generación eólica. El almacenamiento también representa un gran desafío para los criterios tradicionales de planificación del sistema eléctrico, que se genera con generación hidroeléctrica y no renovable como es el caso de Centroamérica. Este artículo revisa la literatura sobre la cargabilidad, regulación y control de frecuencia, estabilidad, aspectos económicos, confiabilidad, armónicos, calidad y resiliencia de la energía aplicada a los sistemas de energía. Presenta una simulación usando ETAP para analizar perfiles de tensión considerando el almacenamiento para el Sistema Eléctrico de El Salvador (ESPS). El resultado muestra una contribución significativa para mejorar los perfiles de tensión y la regulación posterior a una falla. También se identifican oportunidades para el almacenamiento se considera como posibles proveedores de servicios auxiliares que pueden ayudar a estabilizar la red en situaciones de falla o mitigar la variabilidad de generación de energía de fuentes de energía renovables no tradicionales como la energía eólica y solar en el Sistema Eléctrico de Centroamérica. El presente documento proporciona una descripción general de los principales desafíos del almacenamiento para los grandes sistemas de energía.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
Chukwu, U. C. (2011). Assessment of the impact of V2G on the electric distribution network. Tennessee Technological University.
Xiong, J., Zhang, K., Guo, Y., & Su, W. (2015). Investigate the impacts of PEV charging facilities on integrated electric distribution system and electrified transportation system. IEEE Transactions on Transportation Electrification, 1(2), 178-187.
Marah, B., Bhavanam, Y. R., Taylor, G. A., & Ekwue, A. O. (2016, September). Impact of electric vehicle charging systems on low voltage distribution networks. In 2016 51st International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE.
Islam, M. (2013). Analysis of the plug-in hybrid electric vehicle for the smart grid of Canada. International journal of environmental studies, 70(5), 733-743.
da Rocha Almeida, P. M. P. (2011). Impact of vehicle to grid in the power system dynamic behaviour (Doctoral dissertation, Universidade do Porto (Portugal)).
Mitra, P., & Venayagamoorthy, G. K. (2010). Wide area control for improving stability of a power system with plug-in electric vehicles. IET Generation, Transmission & Distribution, 4(10), 1151-1163.
Wu, D., Chau, K. T., Liu, C., Gao, S., & Li, F. (2011). Transient stability analysis of SMES for smart grid with vehicleto-grid operation. IEEE Transactions on Applied Superconductivity, 22(3), 5701105-5701105.
Dharmakeerthi, C. H., Mithulananthan, N., & Atputharajah, A. (2014, October). Development of dynamic EV load model for power system oscillatory stability studies. In 2014 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1-6). IEEE.
Lopes, J. A. P., Soares, F. J., & Almeida, P. M. R. (2010). Integration of electric vehicles in the electric power system. Proceedings of the IEEE, 99(1), 168-183.
Kundur, P. (2007). Power system stability. Power system stability and control, 7-1.
White, C. D., & Zhang, K. M. (2011). Using vehicle-to-grid technology for frequency regulation and peak-load reduction. Journal of Power Sources, 196(8), 3972-3980.
Yuan, K., Song, Y., Sun, C., Xue, Z., Wu, Z., Li, J., & Yuan, B. (2017, November). Harmonic characteristics of distributed generation and electric vehicle integrating to the grid. In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1-5). IEEE.
Kiviluoma, J., & Meibom, P. (2011). Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles. Energy, 36(3), 1758-1767.
Santillán Tituaña, A. (2016). Estudio de la incorporación de baterías en sistemas fotovoltaicos.
Goodenough, J B, Abruna, H D, & Buchanan, M V. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007. United States.
Bistline, J., Cole, W., Damato, G., DeCarolis, J., Frazier, W., Linga, V., ... & Young, D. (2020). Energy storage in long-term system models: a review of considerations, best practices, and research needs. Progress in Energy, 2(3), 032001.
Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: a battery of choices. Science, 334(6058), 928-935.
IEEE-PES. (2020). Energy Storage Opportunities and Research Needs. The Industry Technical Support Leadership Committee.
Sperstad, I. B., Istad, M., Sæle, H., Korpås, M., Oleinikova, I., Hänninen, S., ... & Marinelli, M. (2020, October). Cost-Benefit Analysis of Battery Energy Storage in Electric Power Grids: Research and Practices. In 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) (pp. 314-318). IEEE.
Meneghetti, L. H., Carvalho, E. L., Carati, E. G., da Costa, J. P., de Oliveira Stein, C. M., & Cardoso, R. (2019, September). Energy Storage System for Programmable Dispatch of Photovoltaic Generation. In 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe) (pp. P-1). IEEE.
Qazi, H. S., Liu, N., & Ali, A. (2018, November). Power System Frequency Regulation using Hybrid Electrical Energy Storage System. In 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC) (pp. 377381). IEEE.
Sharma, N., & Sankar, S. (2018, September). Modeling and control of battery energy storage system for providing grid support services. In 2018 Clemson University Power Systems Conference (PSC) (pp. 1-5). IEEE.
Gaunt, C. T. (2017, September). Implications of renewable energy intermittency for power system supply planning. In 2017 IEEE AFRICON (pp. 1095-1100). IEEE.
Weihua, L., Songqi, F., Weichun, G., & Zhiming, W. (2012, May). Research on the control strategy of large-scale wind power energy storage system. In IEEE PES Innovative Smart Grid Technologies (pp. 1-4). IEEE.
Shimizukawa, J., Iba, K., Hida, Y., & Yokoyama, R. (2010, August). Mitigation of intermittency of wind power generation using battery energy storage system. In 45th International Universities Power Engineering Conference UPEC2010 (pp. 1-4). IEEE.
Du, W., Chen, Z., Wang, H. F., & Dunn, R. (2007, September). Energy storage systems applied in power system stability control. In 2007 42nd International Universities Power Engineering Conference (pp. 455-458). IEEE.
Rojas Navarrete, M. (2020). Estadísticas del subsector eléctrico de los países del Sistema de la Integración Centroamericana (SICA), 2020.
Gómez-Ramírez, G. A., Meza, C., & Morales-Hernández, S. (2021). Oportunidades y desafíos para la integración de almacenamiento electroquímico en las redes eléctricas centroamericanas. Revista Tecnología En Marcha, 34(3), Pág. 70–82. https://doi.org/10.18845/tm.v34i3.5352