Oportunidades y desafíos para la integración de almacenamiento electroquímico en las redes eléctricas centroamericanas
Contenido principal del artículo
Resumen
La integración de sistemas estacionarios y de los vehículos eléctricos como almacenamiento electroquímico en la red eléctrica, traerán consigo una serie de acciones en los sistemas eléctricos de potencia a fin de robustecer la red existente, diversificar las mallas energéticas actuales y lograr una contribución significativa ante los requerimientos energéticos de la región y los problemas asociados debido al cambio climático. El presente artículo expone las principales oportunidades y desafíos de su integración, muestra la evolución y situación actual de la matriz eléctrica de Centroamérica. La región presenta condiciones favorables para permitir una penetración de diversas tecnologías de almacenamiento en combinación con generación de electricidad intermitente lo cual representa una nueva consideración en el análisis. Diversas tecnologías de almacenamiento son expuestas que, a pesar de ser antiguas en su descubrimiento y uso, hoy se presentan como una oportunidad para la producción masiva de energía eléctrica renovable. Por último, se analizarán las formas en que dichas tecnologías pueden interactuar con la red eléctrica como unidades de almacenamiento y carga. Finalmente, se identificarán las principales oportunidades y desafíos de la integración de sistemas de almacenamiento electroquímico en la red eléctrica.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
C. Meza, “A review on the Central America electrical energy scenario”. Renewable and Sustainable Energy Reviews, vol. 33, p. 566-577, 2014.
J. Zarnikau, I. Partridge, J. Dinning, D. Robles. “Will the SIEPAC Transmission Project Lead to a Vibrant Electricity Market in Central America?”. International Association for Energy Economics, Fourth Quarter 2013.
D. Gent, and J. Tomei. “Electricity in Central America: Paradigms, reforms and the energy trilemma.” Progress in Development Studies 17.2 (2017): 116-130.
M.E. Rojas Navarrete. “Estadísticas del subsector eléctrico de los países del Sistema de la Integración Centroamericana (SICA)”, Comisión Económica para América Latina y el Caribe, 2018.
Kleinberg, Michael, et al. “Energy storage valuation under different storage forms and functions in transmission and distribution applications.” Proceedings of the IEEE 102.7 (2014): 1073-1083.
Zach, K. A., and H. Auer. “Bulk energy storage versus transmission grid investments: Bringing flexibility into future electricity systems with high penetration of variable RES-electricity.” 2012 9th International Conference on the European Energy Market. IEEE, 2012.
Phillips-Brenes, Hayden, Roberto Pereira-Arroyo, and Mauricio Muñoz-Arias. “Energy-based model of a solar-powered pumped-hydro storage system.” 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX). IEEE, 2019.
J. Machowski, J. W. Bialek y B. James R., Power System Dynamics: Stability and Control, West Sussex: John Wiley & Sons Ltd, 2008.
T. Das y D. C. Aliprantis, «Small-Signal Stability Analysis of Power Systems Integrated with PHEVs» de 2008 IEEE Energy 2030 Conference, 2008.
J. R. Pillai y B. Bak-Jensen, «Integration of Vehicle-to-Grid in the Western Danish Power System» IEEE Transactions on Sustainable Energy, vol. 2, nº 1, pp. 12-19, 2011.
L. Zhaoxi, W. Qiuwei, N. Arne Hejde y Y. Wang, «Day-ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050» Multidisciplinary Digital Publishing Institute (ENERGY), vol. 7, nº 3, pp. 1733--1749, 2014.
U. C. Chukwu, «Assessment of the Impact of V2G on the Electric Distribution Network» Tennessee Technological University, Tennessee, 2011.
P. M. P. da Rocha Almeida, «Impact of Vehicle to Grid in the Power System Dynamic Behaviour» Universidade do Porto (Portugal), Porto, 2011.
D. Wu, K. T. Chau, C. Lui , S. Gao y F. Li, «Transient Stability Analysis of SMES for Smart Grid With Vehicle-to-Grid Operation ‘’,» IEEE Transactions on Applied Superconductivity, vol. 22, nº 3, 2012.
C. H. Dharmakeerthi, N. Mithulananthan y A. Atputharajah, «Development of Dynamic EV Load Model for Power System Oscillatory Stability Studies» de 2014 Australasian Universities Power Engineering Conference (AUPEC), 2014.
A. Gajduk, M. Todorovski, J. Kurths y L. Kocarev, «Improving power grid transient stability by plug-in electric vehicles» New Journal of Physics, vol. 16, nº 11, 2014.
C. Zhang, C. Chen, J. Sun, P. Zheng, X. Lin y Z. Bo, «Impacts of electric vehicles on the transient voltage stability of distribution networks and the study of improvement measures» de Power and Energy Engineering Conference (APPEEC), 2014 IEEE PES Asia-Pacific, 2014.
S. Izadkhast, P. García-González y P. Frías, «An aggregate model of plug-in electric vehicles for primary frequency control» 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016.
J. Xiong, K. Zhang, Y. Guo y W. Su, «Investigate the Impacts of PEV Charging Facilities on Integrated Electric Distribution System and Electrified Transportation System» IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, vol. 1, nº 2, pp. 178-187, 2015.
M. S. Khalid, X. Lin, Y. Zhuo, R. Kumar y M. K. Rafique, «Impact of energy management of electric vehicles on transient voltage stability of microgrid,» de International Electric Vehicle Symposium and Exhibition, 2015.
B. Zhou, T. Littler y L. Meegahapola, «Assessment of transient stability support for electric vehicle integration» de Power and Energy Society General Meeting (PESGM), 2016.
P. Mitra y G. K. Venayagamoorthy, «Wide Area Control for Improving Stability of a Power System with Plug-in Electric Vehicles» IET generation, transmission & distribution, vol. 4, nº 10, pp. 1151-1163, 2010.
T. N. Pham, H. Trinh, L. V. Hien y K. P. Wong, «Integration of Electric Vehicles for Load Frequency Output Feedback Hoo; control of smart grids» IET Generation, Transmission Distribution, vol. 10, nº 13, pp. 3341-3352, 2016.
J. A. P. Lopes, F. J. Soares y P. M. R. Almeida, «Integration of Electric Vehicles in the Electric Power System» Proceedings of the IEEE, vol. 99, nº 1, pp. 168-183, 2011.
K. Yuan, Y. Song, C. Sun, Z. Xue, Z. Wu, J. Li y B. Yuan, «Harmonic characteristics of distributed generation and electric vehicles integrating to the grid» de IEEE Conference on Energy Internet and Energy System Integration, 2017.
A. M. Andwari, A. Pesiridis, S. Rajoo, R. Martinez Botas, and V. Esfahanian, “A review of battery electric vehicle technology and readiness levels,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 414–430, 2017.
J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, “A review on the state-of-theart technologies of electric vehicle, its impacts and prospects,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 365–385, 2015.
Schmidt, O., Melchior, S., Hawkes, A., & Staffell, I. (2019). Projecting the future levelized cost of electricity storage technologies. Joule, 3(1), 81-100.
Gómez-Ramírez, Gustavo Adolfo. “Evolución y tendencias de índices de confiabilidad en sistemas eléctricos de potencia”. Revista Tecnología en Marcha, 2016, vol. 29, no 2, p. 3-13.