FPGA implementation of a linear module for the estimation of electrical parameters for a photovoltaic system (PVS)
Main Article Content
Abstract
This papers presents the analysis and evaluation of the FPGA implementation of a linear adaptive model for the estimation of linearized electrical parameters. These parameters may come, for instance, from non linear models required for complex systems’ efficiency monitoring and/or closed control loop, with speed processing needs not feasible for traditional embedded systems (on the order of at least 1 mega-sample per second). The implemented model is composed by a set of equations, that have been derived from an estimation approach based on a typical Euler numeric differential equation solver. In the particular case here presented, the parameters represent the dynamic behavior of a photovoltaic generator panel. The goal of the model is to evaluate the performance of distributed maximum power tracking algorithms, from a single equation that estimates the current-voltage relations. The algorithm is evaluated first using a Register Transfer Level (RTL) Verilog description, and then is tested on a commercial FPGA with data generated from a high level golden model reference. Final validation on integrated circuits Electronic Design Automation (EDA) tools show that the design is not only feasible to be ported to a commercial CMOS technology, but that is efficient in terms of processing speed and power consumption. Such efficiency makes it adequate for the monitoring and control of interconnected solar panels.
Article Details
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
[2] Bube, R. Fundamentals of solar cells: photovoltaic solar energy conversion. Elsevier, 2012.
[3] Meza, C., Ortega, R., On-line estimation of the temperature dependent parameters of photovoltaic generators. 11th IFAC InternationaWorkshop on Adaptation and Learning in Control and Signal Processing. Julio 2013. Francia.
[4] Chiang, Ch., Tung-Sheng Ch., and Hou-Sheng, H. ”Modeling a photovoltaic power system by CMAC-GBF.” Photovoltaic Energy Conversion, 2003. Procee- dings of 3rd World Conference on. Vol. 3. IEEE, 2003.
[5] Cervantes, A.; Lopez, F.; Jeffry Quiros, Q.; Rodriguez, D.; Salazar-Garcia, C.; Meza, C.; and Chacon-Rodriguez, A. “Implementation of an open core IEEE 754-based FPU with non-linear arithmetic support”, in IEEE 36ta Convención de Centroamérica y Panamá, 10-11 Nov, 2016.
[6] D. G. Bailey, H. Poor. Design for embedded image processing on FPGAs. Singapore: John Wiley & Sons, 2011.
[7] Chacon-Rodriguez,A., Julian P., y Masson, F. “Fast and low power integrated circuit for impulsive sound localisation using kalman fiter approach.” Electronics Letters, 46(7):533-534, 1 2010.
[8] Chacón-Rodríguez,A. “Circuitos integrados de bajo consumo para detección y localización de disparos de armas de fuego,” Ph.D. dissertation, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, 2009.
[9] Lozano, C., Gómez, A., Chacón-Rodríguez, A., Merchan, F., Julian, P. Analysis of source separation algorithms in industrial acoustic environments. In Circuits & Systems (LASCAS), 2015 IEEE 6th Latin American Symposium on, pp. 1-4. IEEE, 2015.