Dialogue between fungi and plants in the root and soil
Main Article Content
Abstract
Fungi are organisms present in all terrestrial ecosystems and play diverse ecological roles in the
niches they inhabit. Soil is a matrix of intense signal exchange, which fungi have taken advantage
of to establish all kinds of interactions. Their relationships with plant roots are determined by
communication processes established between both organisms at the cellular and tissue
level. Although the concept of intelligence in non-animal organisms is still a controversial
issue, there is scientific evidence that points to at least a basal level of intelligence to guide
these communication and response processes. In this context, the most recent knowledge on
rhizospheric, mycorrhizal and endophytic fungi is described; where their effects on plant growth
regulation, nutrition and carbon and water exchange, induction or suppression of systemic
resistance, cell colonization and production of secondary metabolites, either in symbiotic or
pathogenic relationships, are highlighted. Despite new advances, there are great opportunities
for basic and applied research to exploit this molecular dialogue. The aim of this review was to
present some of the phenomena described in fungal-plant interactions in soil and to show their
relevance from the perspective of “intelligent communication”.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
K. Adhikari y A. E. Hartemink, «Linking soils to ecosystem services — A global review», Geoderma, vol. 262,
pp. 101-111, ene. 2016, doi: 10.1016/j.geoderma.2015.08.009.
L. Philippot, C. Chenu, A. Kappler, M. C. Rillig, y N. Fierer, «The interplay between microbial communities and
soil properties», Nat. Rev. Microbiol., vol. 22, n.o
, pp. 226-239, abr. 2024, doi: 10.1038/s41579-023-00980-5.
P. Hinsinger, A. G. Bengough, D. Vetterlein, y I. M. Young, «Rhizosphere: biophysics, biogeochemistry and
ecological relevance», Plant Soil, vol. 321, n.o
, pp. 117-152, ago. 2009, doi: 10.1007/s11104-008-9885-9.
R. L. Berendsen, C. M. J. Pieterse, y P. A. H. M. Bakker, «The rhizosphere microbiome and plant health»,
Trends Plant Sci., vol. 17, n.o
, pp. 478-486, ago. 2012, doi: 10.1016/j.tplants.2012.04.001.
D. L. Jones y P. Hinsinger, «The rhizosphere: complex by design», Plant Soil, vol. 312, n.o
, pp. 1-6, nov. 2008,
doi: 10.1007/s11104-008-9774-2.
R. J. Rodriguez, J. F. White Jr, A. E. Arnold, y R. S. Redman, «Fungal endophytes: diversity and functional
roles», New Phytol., vol. 182, n.o
, pp. 314-330, 2009, doi: 10.1111/j.1469-8137.2009.02773.x.
R. Grabka et al., «Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and
Pathogens», Plants, vol. 11, n.o
, Art. n.o
, ene. 2022, doi: 10.3390/plants11030384.
M. Saleem, M. Arshad, S. Hussain, y A. S. Bhatti, «Perspective of plant growth promoting rhizobacteria (PGPR)
containing ACC deaminase in stress agriculture», J. Ind. Microbiol. Biotechnol., vol. 34, n.o
, pp. 635-648,
oct. 2007, doi: 10.1007/s10295-007-0240-6.
M. Shoresh, G. E. Harman, y F. Mastouri, «Induced Systemic Resistance and Plant Responses to Fungal
Biocontrol Agents», Annu. Rev. Phytopathol., vol. 48, n.o
Volume 48, 2010, pp. 21-43, sep. 2010, doi: 10.1146/
annurev-phyto-073009-114450.
E. Martinez-Klimova, K. Rodríguez-Peña, y S. Sánchez, «Endophytes as sources of antibiotics», Biochem.
Pharmacol., vol. 134, pp. 1-17, jun. 2017, doi: 10.1016/j.bcp.2016.10.010.
F. Wang, L. Zhang, J. Zhou, Z. Rengel, T. S. George, y G. Feng, «Exploring the secrets of hyphosphere of
arbuscular mycorrhizal fungi: processes and ecological functions», Plant Soil, vol. 481, n.o
, pp. 1-22, dic.
, doi: 10.1007/s11104-022-05621-z.
M. Faghihinia, J. Jansa, L. J. Halverson, y P. L. Staddon, «Hyphosphere microbiome of arbuscular mycorrhizal
fungi: a realm of unknowns», Biol. Fertil. Soils, vol. 59, n.o
, pp. 17-34, ene. 2023, doi: 10.1007/s00374-022-
-4.
L. Wang, T. S. George, y G. Feng, «Concepts and consequences of the hyphosphere core microbiome for
arbuscular mycorrhizal fungal fitness and function», New Phytol., vol. n/a, n.o
n/a, doi: 10.1111/nph.19396.
A. L. Castro-Delgado et al., «Wood Wide Web: communication through the mycorrhizal network», Rev. Tecnol.
En Marcha, vol. 33, n.o
, pp. 114-125, dic. 2020, doi: 10.18845/tm.v33i4.4601.
E. Barrios, «Soil biota, ecosystem services and land productivity», Ecol. Econ., vol. 64, n.o
, pp. 269-285, dic.
, doi: 10.1016/j.ecolecon.2007.03.004.
M. Delgado-Baquerizo, J. Grinyer, P. B. Reich, y B. K. Singh, «Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment», Funct. Ecol., vol. 30, n.o
,
pp. 1862-1873, 2016, doi: 10.1111/1365-2435.12674.
L. C. Dincă, P. Grenni, C. Onet, y A. Onet, «Fertilization and Soil Microbial Community: A Review», Appl. Sci.,
vol. 12, n.o
, Art. n.o
, ene. 2022, doi: 10.3390/app12031198.
S. Sharma et al., «Multitrophic Reciprocity of AMF with Plants and Other Soil Microbes in Relation to Biotic
Stress», en Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate, P. Mathur, R.
Kapoor, y S. Roy, Eds., Singapore: Springer Nature, 2023, pp. 329-366. doi: 10.1007/978-981-99-0030-5_13.
F. A. Dijkstra, B. Zhu, y W. Cheng, «Root effects on soil organic carbon: a double-edged sword», New Phytol.,
vol. 230, n.o
, pp. 60-65, 2021, doi: 10.1111/nph.17082.
D. Wipf, F. Krajinski, D. van Tuinen, G. Recorbet, y P.-E. Courty, «Trading on the arbuscular mycorrhiza market:
from arbuscules to common mycorrhizal networks», New Phytol., vol. 223, n.o
, pp. 1127-1142, 2019, doi:
1111/nph.15775.
E. Blagodatskaya y Y. Kuzyakov, «Active microorganisms in soil: Critical review of estimation criteria and
approaches», Soil Biol. Biochem., vol. 67, pp. 192-211, dic. 2013, doi: 10.1016/j.soilbio.2013.08.024.
J. Hao et al., «The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa
(United States)», Appl. Environ. Microbiol., vol. 87, n.o
, pp. e02673-20, ene. 2021, doi: 10.1128/AEM.02673-
M.-C. Leewis et al., «The influence of soil development on the depth distribution and structure of soil microbial
communities», Soil Biol. Biochem., vol. 174, p. 108808, nov. 2022, doi: 10.1016/j.soilbio.2022.108808.
E. Rolli, L. Vergani, E. Ghitti, G. Patania, F. Mapelli, y S. Borin, «‘Cry-for-help’ in contaminated soil: a dialogue
among plants and soil microbiome to survive in hostile conditions», Environ. Microbiol., vol. 23, n.o
, pp.
-5703, 2021, doi: 10.1111/1462-2920.15647.
P. Nannipieri, «Soil Is Still an Unknown Biological System», Appl. Sci., vol. 10, n.o
, Art. n.o
, ene. 2020,
doi: 10.3390/app10113717.
A. Trewavas, «The foundations of plant intelligence», Interface Focus, vol. 7, n.o
, p. 20160098, abr. 2017, doi:
1098/rsfs.2016.0098.
S. Mancuso, The Revolutionary Genius of Plants: A New Understanding of Plant Intelligence and Behavior.
Simon and Schuster, 2018.
F. Cvrčková, H. Lipavská, y V. Žárský, «Plant intelligence: Why, why not or where?», Plant Signal. Behav., vol.
, n.o
, pp. 394-399, may 2009, doi: 10.4161/psb.4.5.8276.
N. P. Money, «Hyphal and mycelial consciousness: the concept of the fungal mind», Fungal Biol., vol. 125, n.o
, pp. 257-259, abr. 2021, doi: 10.1016/j.funbio.2021.02.001.
P. Lyon, «The cognitive cell: bacterial behavior reconsidered», Front. Microbiol., vol. 6, abr. 2015, doi: 10.3389/
fmicb.2015.00264.
A. Trewavas, Plant Behaviour and Intelligence. OUP Oxford, 2014.
J. Gao, B. Barzel, y A.-L. Barabási, «Universal resilience patterns in complex networks», Nature, vol. 530, n.o
, pp. 307-312, feb. 2016, doi: 10.1038/nature16948.
A. Adamatzky, J. Vallverdu, A. Gandia, A. Chiolerio, O. Castro, y G. Dodig-Crnkovic, «Fungal States of Minds».
bioRxiv, p. 2022.04.03.486900, 3 de abril de 2022. doi: 10.1101/2022.04.03.486900.
A. Adamatzky, J. Vallverdu, A. Gandia, A. Chiolerio, O. Castro, y G. Dodig-Crnkovic, «Fungal Minds», en
Fungal Machines: Sensing and Computing with Fungi, A. Adamatzky, Ed., Cham: Springer Nature Switzerland,
, pp. 409-422. doi: 10.1007/978-3-031-38336-6_26.
M. D. Fricker, L. L. M. Heaton, N. S. Jones, y L. Boddy, «The Mycelium as a Network», en The Fungal Kingdom,
John Wiley & Sons, Ltd, 2017, pp. 335-367. doi: 10.1128/9781555819583.ch15.
J. Vallverdú et al., «Slime mould: The fundamental mechanisms of biological cognition», Biosystems, vol. 165,
pp. 57-70, mar. 2018, doi: 10.1016/j.biosystems.2017.12.011.
Y. Fukasawa, M. Savoury, y L. Boddy, «Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources», ISME J., vol. 14, n.o
, pp. 380-388, feb. 2020,
doi: 10.1038/s41396-019-0536-3.
G. Boyno y S. Demir, «Plant-mycorrhiza communication and mycorrhizae in inter-plant communication»,
Symbiosis, vol. 86, n.o
, pp. 155-168, mar. 2022, doi: 10.1007/s13199-022-00837-0.
M. Saritha, P. Kumar, N. R. Panwar, y U. Burman, «Intelligent plant–microbe interactions», Arch. Agron. Soil
Sci., vol. 68, n.o
, pp. 1002-1018, jun. 2022, doi: 10.1080/03650340.2020.1870677.
J. Ge, D. Li, J. Ding, X. Xiao, y Y. Liang, «Microbial coexistence in the rhizosphere and the promotion of plant
stress resistance: A review», Environ. Res., vol. 222, p. 115298, abr. 2023, doi: 10.1016/j.envres.2023.115298.
C. Pellegrin, F. Martin, y C. Veneault-Fourrey, «Molecular Signalling During the Ectomycorrhizal Symbiosis», en
Biology of the Fungal Cell, D. Hoffmeister y M. Gressler, Eds., Cham: Springer International Publishing, 2019,
pp. 95-109. doi: 10.1007/978-3-030-05448-9_6.
S. W. Simard, «Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory», en Memory and
Learning in Plants, F. Baluska, M. Gagliano, y G. Witzany, Eds., Cham: Springer International Publishing, 2018,
pp. 191-213. doi: 10.1007/978-3-319-75596-0_10.
A. Sportes et al., «A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas
and their emerging challenges», Mycorrhiza, vol. 31, n.o
, pp. 637-653, nov. 2021, doi: 10.1007/s00572-021-
-2.
G. Boyno y S. Demir, «Plant-mycorrhiza communication and mycorrhizae in inter-plant communication»,
Symbiosis, vol. 86, n.o
, pp. 155-168, mar. 2022, doi: 10.1007/s13199-022-00837-0.
A. F. Figueiredo, J. Boy, y G. Guggenberger, «Common Mycorrhizae Network: A Review of the Theories and
Mechanisms Behind Underground Interactions», Front. Fungal Biol., vol. 2, 2021, Accedido: 11 de mayo de
[En línea]. Disponible en: https://www.frontiersin.org/article/10.3389/ffunb.2021.735299.
T. Ho-Plágaro y J. M. García, «Molecular Regulation of Arbuscular Mycorrhizal Symbiosis», Int. J. Mol. Sci., vol.
, n.o
, Art. n.o
, ene. 2022, doi: 10.3390/ijms23115960.
J. Choi et al., «The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in
rice», Nat. Commun., vol. 11, n.o
, Art. n.o
, abr. 2020, doi: 10.1038/s41467-020-16021-1.
C. Ding et al., «Cadmium transfer between maize and soybean plants via common mycorrhizal networks»,
Ecotoxicol. Environ. Saf., vol. 232, n.o
, pp. 1-8, mar. 2022, doi: 10.1016/j.ecoenv.2022.113273.
N. Boutafa, «Interplant communication: The role of mycorrhizal networks concerning underground interactions», Degree Thesis, Ecole Polytechnique de l’Université de Tours, Francia, 2019. Accedido: 9 de mayo de
[En línea]. Disponible en: http://memoires.scd.univ-tours.fr/EPU_DA/LOCAL/2019PFE_Nina_Boutafa.pdf
L. O. Marmolejo, M. N. Thompson, y A. M. Helms, «Defense Suppression through Interplant Communication
Depends on the Attacking Herbivore Species», J. Chem. Ecol., vol. 47, n.o
, pp. 1049-1061, 2021, doi:
1007/s10886-021-01314-6.
G. Santoyo, E. Gamalero, y B. R. Glick, «Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress»,
Front. Sustain. Food Syst., vol. 5, pp. 1-18, 2021.
J. Shi, X. Wang, y E. Wang, «Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From
Genes to Ecosystems», Annu. Rev. Plant Biol., vol. 74, n.o
, pp. 569-613, 2023, doi: 10.1146/annurevarplant-061722-090342.
L. Hao et al., «Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize
tolerance to La», Ecotoxicol. Environ. Saf., vol. 212, pp. 1-9, abr. 2021, doi: 10.1016/j.ecoenv.2021.111996.
R. Kalamulla et al., «Arbuscular Mycorrhizal Fungi in Sustainable Agriculture», Sustainability, vol. 14, n.o
,
Art. n.o
, ene. 2022, doi: 10.3390/su141912250.
J. Kaur, J. Chavana, P. Soti, A. Racelis, y R. Kariyat, «Arbuscular mycorrhizal fungi (AMF) influences growth
and insect community dynamics in Sorghum-sudangrass (Sorghum x drummondii)», Arthropod-Plant Interact.,
vol. 14, n.o
, pp. 301-315, jun. 2020, doi: 10.1007/s11829-020-09747-8.
O. A. Lastovetsky et al., «Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism
versus a Mutualism», mBio, vol. 11, n.o
, pp. 1-19, sep. 2020, doi: 10.1128/mBio.02088-20.
E. Kombrink y E. Schmelzer, «The Hypersensitive Response and its Role in Local and Systemic Disease
Resistance», Eur. J. Plant Pathol., vol. 107, n.o
, pp. 69-78, ene. 2001, doi: 10.1023/A:1008736629717.
J. E. Vanderplank, Disease Resistance in Plants. Elsevier, 2012.
C. M. J. Pieterse, C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. M. V. Wees, y P. A. H. M. Bakker, «Induced
Systemic Resistance by Beneficial Microbes», Annu. Rev. Phytopathol., vol. 52, n.o
Volume 52, 2014, pp. 347-
, ago. 2014, doi: 10.1146/annurev-phyto-082712-102340.
Z. M. Patel, R. Mahapatra, y S. S. M. Jampala, «Chapter 11 - Role of fungal elicitors in plant defense mechanism», en Molecular Aspects of Plant Beneficial Microbes in Agriculture, V. Sharma, R. Salwan, y L. K. T. Al-Ani,
Eds., Academic Press, 2020, pp. 143-158. doi: 10.1016/B978-0-12-818469-1.00012-2.
R. Maor y K. Shirasu, «The arms race continues: battle strategies between plants and fungal pathogens», Curr.
Opin. Microbiol., vol. 8, n.o
, pp. 399-404, ago. 2005, doi: 10.1016/j.mib.2005.06.008.
Z. Q. Fu y X. Dong, «Systemic Acquired Resistance: Turning Local Infection into Global Defense», Annu. Rev.
Plant Biol., vol. 64, n.o
Volume 64, 2013, pp. 839-863, abr. 2013, doi: 10.1146/annurev-arplant-042811-105606.
D. C. Fontana et al., «Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and
Abiotic Stresses», Pathogens, vol. 10, n.o
, Art. n.o
, may 2021, doi: 10.3390/pathogens10050570.
Y. Yu, Y. Gui, Z. Li, C. Jiang, J. Guo, y D. Niu, «Induced Systemic Resistance for Improving Plant Immunity by
Beneficial Microbes», Plants, vol. 11, n.o
, Art. n.o
, ene. 2022, doi: 10.3390/plants11030386.
I. A. Vos, L. Moritz, C. M. J. Pieterse, y S. C. M. Van Wees, «Impact of hormonal crosstalk on plant resistance
and fitness under multi-attacker conditions», Front. Plant Sci., vol. 6, ago. 2015, doi: 10.3389/fpls.2015.00639.
R. Hermosa, M. B. Rubio, R. E. Cardoza, C. Nicolás, E. Monte, y S. Gutiérrez, «The contribution of Trichoderma
to balancing the costs of plant growth and defense», Int. Microbiol. Off. J. Span. Soc. Microbiol., vol. 16, n.o
,
pp. 69-80, jun. 2013, doi: 10.2436/20.1501.01.181.
N. Aerts, M. Pereira Mendes, y S. C. M. Van Wees, «Multiple levels of crosstalk in hormone networks regulating
plant defense», Plant J., vol. 105, n.o
, pp. 489-504, 2021, doi: 10.1111/tpj.15124.
V. Ninkovic, D. Markovic, y M. Rensing, «Plant volatiles as cues and signals in plant communication», Plant
Cell Environ., vol. 44, n.o
, pp. 1030-1043, 2021, doi: 10.1111/pce.13910.
E. E. Quiñones-Aguilar, G. Rincón-Enríquez, L. López-Pérez, E. E. Quiñones-Aguilar, G. Rincón-Enríquez, y L.
López-Pérez, «Hongos micorrízicos nativos como promotores de crecimiento en plantas de guayaba (Psidium
guajava L.)», Terra Latinoam., vol. 38, n.o
, pp. 541-554, sep. 2020, doi: 10.28940/terra.v38i3.646.
C. J. U. Farro, M. A. G. Guerrero, C. R. C. Farfán, C. W. A. Sánchez, y G. E. Z. Valdera, «Hongos rizosféricos
de Echinopsis pachanoi “San Pedro hembra” y su potencial como promotores de crecimiento en Zea mays L.
bajo estrés salino», UCV Hacer, vol. 10, n.o
, Art. n.o
, jun. 2021, doi: 10.18050/RevUCVHACER.v10n2a2.
A. E. Fadiji y O. O. Babalola, «Exploring the potentialities of beneficial endophytes for improved plant growth»,
Saudi J. Biol. Sci., vol. 27, n.o
, pp. 3622-3633, dic. 2020, doi: 10.1016/j.sjbs.2020.08.002.
A. A. Adedayo y O. O. Babalola, «Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth»,
J. Fungi, vol. 9, n.o
, p. 239, feb. 2023, doi: 10.3390/jof9020239.
S. Gupta, P. Chaturvedi, y M. Kulkarni, «A critical review on exploiting the pharmaceutical potential of plant
endophytic fungi», Biotechnol. Adv., vol. 39, p. 107462, mar. 2020, doi: 10.1016/j.biotechadv.2019.107462.
J. Poveda, D. Eugui, P. Abril-Urías, y P. Velasco, «Endophytic fungi as direct plant growth promoters for
sustainable agricultural production», Symbiosis, vol. 85, n.o
, pp. 1-19, sep. 2021, doi: 10.1007/s13199-021-
-x.
X. Han y R. Kahmann, «Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens»,
Front. Plant Sci., vol. 10, jun. 2019, doi: 10.3389/fpls.2019.00822.
E. Chanclud y J.-B. Morel, «Plant hormones: a fungal point of view», Mol. Plant Pathol., vol. 17, n.o
, pp. 1289-
, 2016, doi: 10.1111/mpp.12393.
M. A. López, G. Bannenberg, y C. Castresana, «Controlling hormone signaling is a plant and pathogen challenge for growth and survival», Curr. Opin. Plant Biol., vol. 11, n.o
, pp. 420-427, ago. 2008, doi: 10.1016/j.
pbi.2008.05.002.
R. N. Patkar y N. I. Naqvi, «Fungal manipulation of hormone-regulated plant defense», PLOS Pathog., vol. 13,
n.o
, p. e1006334, jun. 2017, doi: 10.1371/journal.ppat.1006334.
L. A.-M. And y W. Rivera-Méndez, «Molecular Identification of Trichoderma spp. in Garlic and Onion Fields and
In Vitro Antagonism Trials on Sclerotium cepivorum», Rev. Bras. Ciênc. Solo, vol. 40, p. e0150454, abr. 2016,
doi: 10.1590/18069657rbcs20150454.
Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum
in onion plants under tropical climate conditions», Biological Control, vol. 141, p. 104145, feb. 2020, doi:
1016/j.biocontrol.2019.104145.