Insects as allies in biotechnology: a sevenyears exploration of neotropical social wasps for novel antibiotic compounds

Main Article Content

Laura Chavarría-Pizarro
Kattia Núñez-Montero

Abstract

Insects are one of the most significant organisms in terrestrial ecosystems, but they are also
crucial in human-modified environments such as crops and cities. Insects have been the subject
of study for a long time, but with the advent of biotechnology, the focus of these studies is
shifting. For instance, social insects are being researched due to the symbiotic relationships
they maintain with microorganisms that produce antimicrobial substances. For this reason, the
Biotechnology Research Center (CIB) of the Instituto Tecnológico de Costa Rica (ITCR) has
conducted two studies to determine the presence of actinobacteria in colonies of social wasps
and to test their antibiotic activity. The main objective of this paper was to perform a review of the
results obtained from the research projects conducted at the Biotechnology Research Center
(CIB). As a result of these studies, a collection of 60 actinobacteria has been established, which
also inhibited the growth of strains related to human and insect pathogens. Due to these findings,
two research projects are being conducted to analyze the genome of the strains with the highest
inhibition, and to characterize the secondary metabolites. The findings have shown that wasps
belonging to the Epiponini tribe maintain associations with several genera of actinobacteria
that exhibit antibiotic activity, and that these strains possess a variety of genes associated with
the production of bioactive compounds. The results demonstrate the great potential of these
organisms for the discovery of new natural antimicrobial products.

Article Details

How to Cite
Chavarría-Pizarro, L., & Núñez-Montero, K. (2024). Insects as allies in biotechnology: a sevenyears exploration of neotropical social wasps for novel antibiotic compounds. Tecnología En Marcha Journal, 37(9), Pág. 84–93. https://doi.org/10.18845/tm.v37i9.7614
Section
Artículo científico

References

Hölldobler, T.B. y Wilson, E.O., The Superorganism: The Beauty, Elegance, and Strangeness of Insect

Societies, vol. 85. New York: W. W. Norton, 2009

F. Sánchez-Bayo y K. A. G. Wyckhuys, «Worldwide decline of the entomofauna: A review of its drivers», Biol.

Conserv., vol. 232, pp. 8-27, abr. 2019, doi: 10.1016/j.biocon.2019.01.020.

Arnold van Huis, Harmke Klunder, Esther Mertens, Afton Halloran, Giulia Muir, y Paul Vantomme, «Edible

insects: future prospects for food and feed security». Food and Agriculture Organization of the United Nations

FAO, 2013.

S. Belluco et al., «Insects and Public Health: An Overview», Insects, vol. 14, n.o

, Art. n.o

, mar. 2023, doi:

3390/insects14030240.

C. Jansen y K.-H. Kogel, «Insect Antimicrobial Peptides as New Weapons Against Plant Pathogens», en Insect

Biotechnology, A. Vilcinskas, Ed., Dordrecht: Springer Netherlands, pp. 123-144. 2011 doi: 10.1007/978-90-

-9641-8_7.

J. Gatehouse y D. Price, «Protection of Crops Against Insect Pests Using RNA Interference», en Insect

Biotechnology, vol. 2, pp. 145-168. 2011. doi: 10.1007/978-90-481-9641-8_8.

K. Mukherjee, E. Domann, y T. Hain, «The Greater Wax Moth Galleria mellonella as an Alternative Model Host

for Human Pathogens», en Insect Biotechnology, A. Vilcinskas, Ed., Dordrecht: Springer Netherlands. pp.

-14. 2011. doi: 10.1007/978-90-481-9641-8_1.

T. Roeder, K. Isermann, C. Wagner, y C. Warmbold, «Fruit Flies as Models in Biomedical Research – A

Drosophila Asthma Model», en Insect Biotechnology, A. Vilcinskas, Ed., Dordrecht: Springer Netherlands, pp.

-27. 2011. doi: 10.1007/978-90-481-9641-8_2.

M. Kaltenpoth, «Actinobacteria as mutualists: general healthcare for insects?», Trends Microbiol., vol. 17, n.o

, pp. 529-535, dic. 2009, doi: 10.1016/j.tim.2009.09.006.

A. Stow y A. Beattie, «Chemical and genetic defenses against disease in insect societies», Brain. Behav.

Immun., vol. 22, n.o

, pp. 1009-1013, oct. 2008, doi: 10.1016/j.bbi.2008.03.008.

S. Turillazzi, N. Meriggi, y D. Cavalieri, «Mutualistic Relationships between Microorganisms and Eusocial

Wasps (Hymenoptera, Vespidae)», Microorganisms, vol. 11, n.o

, Art. n.o

, may 2023, doi: 10.3390/microorganisms11051340.

M. Kaltenpoth et al., «‘Candidatus Streptomyces philanthi’, an endosymbiotic streptomycete in the antennae

of Philanthus digger wasps», Int. J. Syst. Evol. Microbiol., vol. 56, n.o

, pp. 1403-1411, 2006, doi: 10.1099/

ijs.0.64117-0.

J. Kroiss et al., «Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring», Nat.

Chem. Biol., vol. 6, n.o

, pp. 261-263, abr. 2010, doi: 10.1038/nchembio.331.

M. D. Hastings, D. C. Queller, F. Eischen, y J. E. Strassmann, «Kin selection, relatedness, and worker control

of reproduction in a large-colony epiponine wasp, Brachygastra mellifica», Behav. Ecol., vol. 9, n.o

, pp. 573-

, ene. 1998, doi: 10.1093/beheco/9.6.573.

A. V. Santos, R. J. Dillon, V. M. Dillon, S. E. Reynolds, y R. I. Samuels, «Ocurrence of the antibiotic producing

bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa», FEMS Microbiol. Lett.,

vol. 239, n.o

, pp. 319-323, oct. 2004, doi: 10.1016/j.femsle.2004.09.005.

C. R. Currie, J. A. Scott, R. C. Summerbell, y D. Malloch, «Fungus-growing ants use antibiotic-producing bacteria to control garden parasites», Nature, vol. 398, n.o

, pp. 701-704, abr. 1999, doi: 10.1038/19519.

P. Graystock y W. O. H. Hughes, «Disease resistance in a weaver ant, Polyrhachis dives, and the role of

antibiotic-producing glands», Behav. Ecol. Sociobiol., vol. 65, n.o

, pp. 2319-2327, dic. 2011, doi: 10.1007/

s00265-011-1242-y.

E. B. Van Arnam et al., «Selvamicin, an atypical antifungal polyene from two alternative genomic contexts»,

Proc. Natl. Acad. Sci., vol. 113, n.o

, pp. 12940-12945, nov. 2016, doi: 10.1073/pnas.1613285113.

M. Poulsen, W. O. H. Hughes, y J. J. Boomsma, «Differential resistance and the importance of antibiotic production in Acromyrmex echinatior leaf-cutting ant castes towards the entomopathogenic fungus Aspergillus

nomius», Insectes Sociaux, vol. 53, n.o

, pp. 349-355, ago. 2006, doi: 10.1007/s00040-006-0880-y.

C. Tranter, P. Graystock, C. Shaw, J. F. S. Lopes, y W. O. H. Hughes, «Sanitizing the fortress: protection of ant

brood and nest material by worker antibiotics», Behav. Ecol. Sociobiol., vol. 68, n.o

, pp. 499-507, mar. 2014,

doi: 10.1007/s00265-013-1664-9.

A. A. Madden, A. Grassetti, J.-A. N. Soriano, y P. T. Starks, «Actinomycetes with Antimicrobial Activity Isolated

from Paper Wasp (Hymenoptera: Vespidae: Polistinae) Nests», Environ. Entomol., vol. 42, n.o

, pp. 703-710,

ago. 2013, doi: 10.1603/EN12159.

B. Matarrita-Carranza et al., «Streptomyces sp. M54: an actinobacteria associated with a neotropical social

wasp with high potential for antibiotic production», Antonie Van Leeuwenhoek, vol. 114, n.o

, pp. 379-398, abr.

, doi: 10.1007/s10482-021-01520-y.

B. Matarrita-Carranza, R. D. Moreira-Soto, C. Murillo-Cruz, M. Mora, C. R. Currie, y A. A. Pinto-Tomas,

«Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria»,

Front. Microbiol., vol. 8, oct. 2017, doi: 10.3389/fmicb.2017.02016.

Jeanne RL, «The swarm founding Polistinae», en The Social Biology of Wasps, Ross KG, Matthews RW (eds.).,

Ithaca: Cornell University, 1991, pp. 7-29.

V. Corby-Harris, P. Maes, y K. E. Anderson, «The Bacterial Communities Associated with Honey Bee (Apis

mellifera) Foragers», PLOS ONE, vol. 9, n.o

, p. e95056, abr. 2014, doi: 10.1371/journal.pone.0095056.

S. Schmidt, S. Kildgaard, H. Guo, C. Beemelmanns, y M. Poulsen, «The chemical ecology of the fungusfarming termite symbiosis», Nat. Prod. Rep., vol. 39, n.o

, pp. 231-248, feb. 2022, doi: 10.1039/D1NP00022E.

Chavarría-Pizarro, L, «Los insectos y la biotecnología: avispas sociales como fuente de nuevos compuestos

antibióticos», Revista Tecnología en Marcha, vol. 32, 2019, doi: https://doi.org/10.18845/tm.v32i9.4639.

M. V. Baio, F. B. Noll, y R. Zucchi, «Shape differences rather than size differences between castes in the

Neotropical swarm-founding wasp Metapolybia docilis (Hymenoptera: Vespidae, Epiponini)», BMC Evol. Biol.,

vol. 3, n.o

, p. 10, may 2003, doi: 10.1186/1471-2148-3-10.

F. S. Nascimento, I. C. Tannure-Nascimento, y R. Zucchi, «Behavioral mediators of cyclical oligogyny in the

Amazonian swarm-founding wasp Asteloeca ujhelyii (Vespidae, Polistinae, Epiponini)», Insectes Sociaux, vol.

, n.o

, pp. 17-23, feb. 2004, doi: 10.1007/s00040-003-0696-y.

L. Chavarría-Pizarro * y M. J. West-Eberhard, «The behavior and natural history of Chartergellus, a little-known

genus of neotropical social wasps (Vespidae Polistinae Epiponini)», Ethol. Ecol. Evol., vol. 22, n.o

, pp. 317-

, nov. 2010, doi: 10.1080/03949370.2010.510035.

L. Chavarría-Pizarro, K. Núñez-Montero, M. Gutiérrez-Araya, W. Watson-Guido, W. Rivera-Méndez, y J.

Pizarro-Cerdá, «Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae,

Epiponini) with antimicrobial potential for natural product discovery», FEMS Microbes, vol. 5, p. xtae005, ene.

, doi: 10.1093/femsmc/xtae005.

M. Gutiérrez-Araya, K. Núñez-Montero, J. Pizarro-Cerdá, y L. Chavarría-Pizarro, «Draft Genome Sequences

of Saccharopolyspora sp. Strains and Streptomyces sp. Strains, Isolated from Social Wasps (Vespidae;

Polistinae: Epiponini)», Microbiol. Resour. Announc., vol. 11, n.o

, pp. e00935-21, ene. 2022, doi: 10.1128/

MRA.00935-21.

D. Rojas-Villalta, K. Núñez-Montero, J. Pizarro-Cerdá, y L. Chavarría-Pizarro, «Draft Genome Sequences of

Tsukamurella sp. 8F and 8J Strains Isolated from Social Wasps (Vespidae; Polistinae: Epiponini)», Microbiol.

Resour. Announc., vol. 12, n.o

, pp. e00237-23, may 2023, doi: 10.1128/mra.00237-23

Most read articles by the same author(s)