Enfoques basados en microalgas para superar los efectos de la pandemia por COVID-19
Contenido principal del artículo
Resumen
A finales del 2019 un nuevo coronavirus llamado coronavirus de tipo 2 causante del síndrome respiratorio agudo severo (SARS-CoV-2) empezó a propagarse rápidamente a nivel mundial, al punto de convertirse en una pandemia para inicios del 2020. Después de casi dos años de vivir con esta nueva enfermedad, la humanidad sigue enfrentado una de sus mayores crisis, no solamente a nivel de salud, sino también ambiental y económico. Para poder alivianar algunos de los efectos sufridos mundialmente por la pandemia es necesario la integración de estrategias novedades en terapias médicas y fortalecimiento económico. Bajo este escenario, la presente revisión presenta las funcionalidades de las microalgas que podrían ser explotadas para impulsar las áreas más afectadas por la pandemia. Entre los beneficios más promisorios se destacan las diversas biomoléculas derivadas de microalgas que podrían ser terapias adyuvantes o agentes preventivos, así como su potencial para convertirse en biofábricas de anticuerpos o vacunas a través de ingeniería genética. Finalmente, el desarrollo de industrias a base de microalgas podría convertirse en un impulsor de la economía y una fuente de generación de empleos locales. De esta forma se expone el impacto positivo de los productos derivados de microalgas en ámbitos farmacológicos, ambientales e industriales que podrían explotarse para contrarrestar las consecuencias de dos años en pandemia.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
A. Sharma, I. Ahmad Farouk, and S. K. Lal, “COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention,” Viruses, vol. 13, no. 2, Feb. 2021, doi: 10.3390/V13020202.
B. Hu, H. Guo, P. Zhou, and Z. L. Shi, “Characteristics of SARS-CoV-2 and COVID-19,” Nat. Rev. Microbiol. 2020 193, vol. 19, no. 3, pp. 141–154, Oct. 2020, doi: 10.1038/s41579-020-00459-7.
S. Baloch, M. A. Baloch, T. Zheng, and X. Pei, “The Coronavirus Disease 2019 (COVID-19) Pandemic,” Tohoku J. Exp. Med., vol. 250, no. 4, pp. 271–278, 2020, doi: 10.1620/TJEM.250.271.
M. Belitski, C. Guenther, A. S. Kritikos, and R. Thurik, “Economic effects of the COVID-19 pandemic on entrepreneurship and small businesses,” Small Bus. Econ., p. 8274, 2021, doi: 10.1007/S11187-021-00544-Y.
A. M. Abbas et al., “Psychological effect of COVID-19 on medical health-care workers,” https://doi.org/10.1080/13651501.2020.1791903, vol. 25, no. 2, pp. 1–2, 2020, doi: 10.1080/13651501.2020.1791903.
M. Yıldırım, Ö. Akgül, and E. Geçer, “The Effect of COVID-19 Anxiety on General Health: the Role of COVID-19 Coping,” Int. J. Ment. Health Addict., p. 1, 2021, doi: 10.1007/S11469-020-00429-3.
G. White-Dzuro et al., “Multisystem effects of COVID-19: a concise review for practitioners,” Postgrad. Med., vol. 133, no. 1, pp. 20–27, 2021, doi: 10.1080/00325481.2020.1823094.
N. U. Benson, D. E. Bassey, and T. Palanisami, “COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint,” Heliyon, vol. 7, no. 2, p. e06343, Feb. 2021, doi: 10.1016/J.HELIYON.2021.E06343.
G. Thakur et al., “COVID-19 Joint Pandemic Modeling and Analysis Platform,” Proc. 1st ACM SIGSPATIAL Int. Work. Model. Underst. Spread COVID-19, COVID-19 2020, pp. 43–52, Nov. 2020, doi: 10.1145/3423459.3430760.
N. Moradian et al., “Interdisciplinary Approaches to COVID-19,” Adv. Exp. Med. Biol., vol. 1318, pp. 923–936, 2021, doi: 10.1007/978-3-030-63761-3_52.
F. G. A. Fernández, A. Reis, R. H. Wijffels, M. Barbosa, V. Verdelho, and B. Llamas, “The role of microalgae in the bioeconomy,” N. Biotechnol., vol. 61, pp. 99–107, Mar. 2021, doi: 10.1016/J.NBT.2020.11.011.
O. Gómez-Espinoza, M. Guerrero-Barrantes, K. Meneses-Montero, and K. Núñez-Montero, “Identification of a microalgae collection isolated from Costa Rica by 18s rDNA sequencing,” Acta Biol. Colomb., vol. 23, no. 2, pp. 199–204, 2018.
D. de Freitas Coêlho et al., “Microalgae: Cultivation Aspects and Bioactive Compounds,” Brazilian Arch. Biol. Technol., vol. 62, p. 19180343, Jun. 2019, doi: 10.1590/1678-4324-2019180343.
O. Gómez-Espinoza et al., “Transformación genética de Chlorella sorokiniana mediada por Agrobacterium tumefaciens,” Rev. Tecnol. en Marcha, vol. 31, no. 1, pp. 160–166, Mar. 2018, doi: 10.18845/TM.V31I1.3505.
J. A. Liber, A. E. Bryson, G. Bonito, and Z. Y. Du, “Harvesting Microalgae for Food and Energy Products,” Small Methods, vol. 4, no. 10, p. 2000349, Oct. 2020, doi: 10.1002/SMTD.202000349.
R. Araújo et al., “Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy,” Front. Mar. Sci., vol. 7, p. 1247, Jan. 2021, doi: 10.3389/FMARS.2020.626389/BIBTEX.
J. Chen, Y. Wang, J. Benemann, X. Zhang, H. Hu, and S. Qin, “Microalgal industry in China: challenges and prospects,” J. Appl. Phycol., vol. 28, no. 2, pp. 715–725, 2016, doi: 10.1007/s10811-015-0720-4.
R. R. Narala et al., “Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system,” Front. Energy Res., vol. 4, no. AUG, p. 29, 2016, doi: 10.3389/FENRG.2016.00029/BIBTEX.
J. Sen Tan et al., “A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids,” https://doi.org/10.1080/21655979.2020.1711626, vol. 11, no. 1, pp. 116–129, Jan. 2020, doi: 10.1080/21655979.2020.1711626.
D. Jha, V. Jain, B. Sharma, A. Kant, and V. K. Garlapati, “Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential,” ChemBioEng Rev., vol. 4, no. 4, pp. 257–272, Aug. 2017, doi: 10.1002/CBEN.201600023.
T. A. Olasehinde, A. O. Olaniran, A. I. Okoh, and P. Koulen, “Therapeutic Potentials of Microalgae in the Treatment of Alzheimer’s Disease,” Molecules, vol. 22, no. 3, Mar. 2017, doi: 10.3390/MOLECULES22030480.
C. L. Wan Afifudeen, K. Y. Teh, and T. S. Cha, “Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19,” Mol. Biol. Rep., 2021, doi: 10.1007/S11033-021-06903-Y.
W. Y. Chia, H. Kok, K. W. Chew, S. S. Low, and P. L. Show, “Can algae contribute to the war with Covid-19?,” Bioengineered, vol. 12, no. 1, pp. 1226–1237, 2021, doi: 10.1080/21655979.2021.1910432.
J. Chen et al., “Mechanism Analysis of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide from Isochrysis zhanjiangensis Microalgae for Suppressing Vascular Injury in Human Umbilical Vein Endothelial Cells,” J. Agric. Food Chem., vol. 68, no. 15, pp. 4411–4423, Apr. 2020, doi: 10.1021/ACS.JAFC.0C00925/SUPPL_FILE/JF0C00925_SI_001.PDF.
D. MubarakAli, J. MohamedSaalis, R. Sathya, N. Irfan, and J. W. Kim, “An evidence of microalgal peptides to target spike protein of COVID-19: In silico approach,” Microb. Pathog., vol. 160, p. 105189, Nov. 2021, doi: 10.1016/J.MICPATH.2021.105189.
Y. Ren et al., “Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook,” Bioresour. Technol., vol. 340, p. 125736, Nov. 2021, doi: 10.1016/J.BIORTECH.2021.125736.
J. Talukdar, S. Dasgupta, V. Nagle, and B. Bhadra, “COVID-19: Potential of Microalgae Derived Natural Astaxanthin As Adjunctive Supplement in Alleviating Cytokine Storm,” SSRN Electron. J., Apr. 2020, doi: 10.2139/SSRN.3579738.
F. Khavari, M. Saidijam, M. Taheri, and F. Nouri, “Microalgae: therapeutic potentials and applications,” Mol. Biol. Rep., vol. 48, no. 5, p. 1, May 2021, doi: 10.1007/S11033-021-06422-W.
J. Talukdar, B. Bhadra, T. Dattaroy, V. Nagle, and S. Dasgupta, “Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19,” Biomed. Pharmacother., vol. 132, p. 110886, Dec. 2020, doi: 10.1016/J.BIOPHA.2020.110886.
T. Minato et al., “Non-conventional octameric structure of C-phycocyanin,” Commun. Biol. 2021 41, vol. 4, no. 1, pp. 1–10, Oct. 2021, doi: 10.1038/s42003-021-02767-x.
A. Tzachor, O. Rozen, S. Khatib, S. Jensen, and D. Avni, “Photosynthetically Controlled Spirulina, but Not Solar Spirulina, Inhibits TNF-α Secretion: Potential Implications for COVID-19-Related Cytokine Storm Therapy,” Mar. Biotechnol., vol. 23, no. 1, pp. 149–155, Feb. 2021, doi: 10.1007/S10126-021-10020-Z/FIGURES/3.
A. Bhatt, P. Arora, and S. K. Prajapati, “Can Algal Derived Bioactive Metabolites Serve as Potential Therapeutics for the Treatment of SARS-CoV-2 Like Viral Infection?,” Front. Microbiol., vol. 11, p. 2668, Nov. 2020, doi: 10.3389/FMICB.2020.596374/BIBTEX.
S. Singh, V. Dwivedi, D. Sanyal, and S. Dasgupta, “Therapeutic and Nutritional Potential of Spirulina in Combating COVID-19 Infection,” AIJR Prepr., May 2020, doi: 10.21467/PREPRINTS.49.
D. Reynolds et al., “Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis,” Algal Res., vol. 57, p. 102331, Jul. 2021, doi: 10.1016/J.ALGAL.2021.102331.
M. Tran et al., “Production of unique immunotoxin cancer therapeutics in algal chloroplasts,” Proc. Natl. Acad. Sci., vol. 110, no. 1, pp. E15–E22, Jan. 2013, doi: 10.1073/PNAS.1214638110.
J. E. Vela Ramirez, L. A. Sharpe, and N. A. Peppas, “Current state and challenges in developing oral vaccines,” Adv. Drug Deliv. Rev., vol. 114, pp. 116–131, May 2017, doi: 10.1016/J.ADDR.2017.04.008.
V. A. Márquez-Escobar, B. Bañuelos-Hernández, and S. Rosales-Mendoza, “Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development,” J. Biotechnol., vol. 282, pp. 86–91, Sep. 2018, doi: 10.1016/J.JBIOTEC.2018.07.025.
B. Bañuelos-Hernández, E. Monreal-Escalante, O. González-Ortega, C. Angulo, and S. Rosales-Mendoza, “Algevir: An expression system for microalgae based on viral vectors,” Front. Microbiol., vol. 8, no. JUN, p. 1100, Jun. 2017, doi: 10.3389/FMICB.2017.01100/BIBTEX.
A. Ramos-Vega, C. Angulo, B. Bañuelos-Hernández, and E. Monreal-Escalante, “Microalgae-made vaccines against infectious diseases,” Algal Res., vol. 58, p. 102408, Oct. 2021, doi: 10.1016/J.ALGAL.2021.102408.
O. C. Demurtas, S. Massa, P. Ferrante, A. Venuti, R. Franconi, and G. Giuliano, “A Chlamydomonas-Derived Human Papillomavirus 16 E7 Vaccine Induces Specific Tumor Protection,” PLoS One, vol. 8, no. 4, p. e61473, Apr. 2013, doi: 10.1371/JOURNAL.PONE.0061473.
J. A. Gregory et al., “Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission,” PLoS One, vol. 7, no. 5, p. e37179, May 2012, doi: 10.1371/JOURNAL.PONE.0037179.
R. Barahimipour, J. Neupert, and • Ralph Bock, “Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker,” Plant Mol. Biol., vol. 90, doi: 10.1007/s11103-015-0425-8.
D. J. Barrera et al., “Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin,” Plant Biotechnol. J., vol. 13, no. 1, pp. 117–124, Jan. 2015, doi: 10.1111/PBI.12244.
Y. El-Ayouty, I. El-Manawy, S. Nasih, E. Hamdy, and R. Kebeish, “Engineering Chlamydomonas reinhardtii for Expression of Functionally Active Human Interferon-α,” Mol. Biotechnol., vol. 61, no. 2, pp. 134–144, Feb. 2019, doi: 10.1007/S12033-018-0143-Y/TABLES/4.
S. Rosales-Mendoza, I. García-Silva, O. González-Ortega, J. M. Sandoval-Vargas, A. Malla, and S. Vimolmangkang, “The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals,” Mol. 2020, Vol. 25, Page 4049, vol. 25, no. 18, p. 4049, Sep. 2020, doi: 10.3390/MOLECULES25184049.
M. Journal et al., “Kumar et al. MWJ 2013, 4:6 (GCE special issue) Development of an RNAi based microalgal larvicide to control mosquitoes,” vol. 4, no. 6, 2013.
C. J. Wu, H. W. Huang, C. Y. Liu, C. F. Hong, and Y. L. Chan, “Inhibition of SARS-CoV replication by siRNA,” Antiviral Res., vol. 65, no. 1, pp. 45–48, Jan. 2005, doi: 10.1016/J.ANTIVIRAL.2004.09.005.
U. F. Chowdhury, M. U. Sharif Shohan, K. I. Hoque, M. A. Beg, M. K. Sharif Siam, and M. A. Moni, “A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycoprotein gene of SARS-CoV-2,” Genomics, vol. 113, no. 1 Pt 1, pp. 331–343, Jan. 2021, doi: 10.1016/J.YGENO.2020.12.021.
R. J. Wicker, G. Kumar, E. Khan, and A. Bhatnagar, “Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme,” Chem. Eng. J., vol. 415, p. 128932, Jul. 2021, doi: 10.1016/J.CEJ.2021.128932.
A. Suomi, T. P. Schofield, and P. Butterworth, “Unemployment, Employability and COVID19: How the Global Socioeconomic Shock Challenged Negative Perceptions Toward the Less Fortunate in the Australian Context,” Front. Psychol., vol. 11, p. 2745, Oct. 2020, doi: 10.3389/FPSYG.2020.594837/BIBTEX.
F. Villalta-Romero, F. Murillo-Vega, B. Martínez-Gutiérrez, J. Valverde-Cerdas, A. Sánchez-Kopper, and M. Guerrero-Barrantes, “Biotecnología microalgal en Costa Rica: Oportunidades de negocio para el sector productivo nacional,” Rev. Tecnol. en Marcha, vol. 32, pp. 85–93, Sep. 2019, doi: 10.18845/TM.V32I9.4634.
J. Rumin, E. Nicolau, R. G. de Oliveira, C. Fuentes-Grünewald, and L. Picot, “Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe,” Mar. Drugs 2020, Vol. 18, Page 264, vol. 18, no. 5, p. 264, May 2020, doi: 10.3390/MD18050264.
J. Rumin, R. G. de Oliveira Junior, J. B. Bérard, and L. Picot, “Improving Microalgae Research and Marketing in the European Atlantic Area: Analysis of Major Gaps and Barriers Limiting Sector Development,” Mar. Drugs 2021, Vol. 19, Page 319, vol. 19, no. 6, p. 319, May 2021, doi: 10.3390/MD19060319.
S. Merlo, X. Gabarrell Durany, A. Pedroso Tonon, and S. Rossi, “Marine Microalgae Contribution to Sustainable Development,” Water 2021, Vol. 13, Page 1373, vol. 13, no. 10, p. 1373, May 2021, doi: 10.3390/W13101373.
FAO, The impact of COVID-19 on fisheries and aquaculture food systems, possible responses: Information paper. Rome, 2021.
P. K. Sarker, A. R. Kapuscinski, B. McKuin, D. S. Fitzgerald, H. M. Nash, and C. Greenwood, “Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 1–14, Nov. 2020, doi: 10.1038/s41598-020-75289-x.
P. Han, Q. Lu, L. Fan, and W. Zhou, “A Review on the Use of Microalgae for Sustainable Aquaculture,” Appl. Sci. 2019, Vol. 9, Page 2377, vol. 9, no. 11, p. 2377, Jun. 2019, doi: 10.3390/APP9112377.
L. Zhu, S. Huo, and L. Qin, “A Microalgae-Based Biodiesel Refinery: Sustainability Concerns and Challenges,” Int. J. Green Energy, vol. 12, no. 6, pp. 595–602, Jun. 2015, doi: 10.1080/15435075.2013.867406.