Mycoremediation: the case of Pleurotus ostreatus on synthetic polymers such as cellulose acetate

Main Article Content

Isabel Barrantes-Jiménez
Ericka Marín-Sandí
Mónica Murillo-Murillo
David Rojas-Rojas
Sergio Vallecillo-Cedeño
Sebastián Valverde-Rojas

Abstract

Fungi can be used to remove or break down contaminating compounds through a mycoremediation process. Sometimes even more efficiently than prokaryotes, so they can be used to reduce contamination from non-biodegradable polymers. Cellulose acetate is a plastic normally used in the manufacture of cigarettes, so when it is discarded it generates pollution. The Pleurotus ostreatus fungus has the ability to degrade cellulose acetate through the enzymes it secretes. The enzyme is responsible for hydrolyzing the acetyl group of cellulose acetate while cellulolytic enzymes break down the cellulose skeleton into sugars, polysaccharides or cellobiose. In addition to cellulose acetate, this fungus is capable of breaking down other conventionally non-biodegradable polymers, so it has the potential to be used to reduce pollution. Large-scale cultivation of the fungus has proven to be more economically viable than conventional non-biodegradable polymer treatment methods, which is an additional advantage it presents.

Article Details

How to Cite
Barrantes-Jiménez, I., Marín-Sandí, E., Murillo-Murillo, M., Rojas-Rojas, D., Vallecillo-Cedeño, S., & Valverde-Rojas, S. (2024). Mycoremediation: the case of Pleurotus ostreatus on synthetic polymers such as cellulose acetate. Tecnología En Marcha Journal, 37(2), Pág. 15–22. https://doi.org/10.18845/tm.v37i2.6478
Section
Artículo científico

References

L. Romero-Bautista, M. Á. Islas-Santillán, M. López-Herrera, N. Ayala-Sánchez, and I. E. Soria-Mercado, “Los hongos poliporoides de la subcuenca del río Metztitlán, Hidalgo, México,” Estudios en Biodiversidad, vol. I, pp. 196–209, 2015.

G. Gadd, “Mycotransformation of organic and inorganic substrates”, Mycologist, vol. 18, no. 2, pp. 60-70, 2004. Disponible: 10.1017/s0269915x04002022. [Consultado: 03-oct-2022].

M. Mathur, P. Gehlot, “Mechanistic evaluation of bioremediation properties of fungi”, In New and Future Developments in Microbial Biotechnology and Bioengineering, vol 1, pp. 267–286, 2020.

M. Medaura, M. Guivernau, F. Boldú, X. Moreno y M. Viñas, M. (2013). “Micorremediación y su aplicación para el tratamiento de suelos contaminados con hidrocarburos pesados”, V REDISA, vol 1, pp. 1-7, 2013.

S. Tsujiyama, T. Muraoka y N. Takada, “Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator”, Biotechnology Letters, vol. 35, no. 7, pp. 1079-1083, 2013. Disponible: 10.1007/s10529-013-1179-5 [Consultado: 03-oct-2022].

L. E. Miguel Sánchez, G. Martínez Villa, J. Mentado Morales, M. E. Codero Sánchez, L. G. Zárate López, A. Regalado Méndez, y E. Peralta Reyes, “DEGRADACIÓN ELECTROQUÍMICA DE 2,4-DICLOROFENOL EN UN REACTOR ELECTROQUÍMICO FM01-LC,” Memorias del XXXVIII Encuentro Nacional de la AMIDIQ, vol. I, pp. 1–5, Agosto. 2017.

S. Eskander, S. Abd El-Aziz, H. El-Sayaad and H. Saleh, “Cementation of Bioproducts Generated from Biodegradation of Radioactive Cellulosic-Based Waste Simulates by Mushroom”, ISRN Chemical Engineering, vol. 2012, pp. 1-6, 2012. Disponible: 10.5402/2012/329676 [Consultado: 03-oct-2022].

A. Verma et al., “Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye”, International Journal of Biological Macromolecules, vol. 148, pp. 1130-1139, 2020. Disponible: 10.1016/j.ijbiomac.2020.01.142 [Consultado: 03-oct-2022].

R. Yogita, S. Simanta, S. Aparna y S. Kamlesh, “Biodegradation of malachite green by wild mushroom of Chhatisgrah”, Journal of Experimental Sciences, vol 2, pp. 69-72, 2011.

S. Abiodun y E. Ejiro, “Bioremediation of a Crude Oil Polluted Soil with Pleurotus Pulmonarius and Glomus Mosseae Using Amaranthus Hybridus as a Test Plant”, Journal of Bioremediation & Biodegradation, vol. 01, no. 03, 2010. Disponible: 10.4172/2155-6199.1000113 [Consultado: 03-oct-2022].

E. Villacres Manzano, “Análisis Toxicológico de Hidrocarburos Aplicado a la Salud Ocupacional”, Tesis, Pontificia Universidad Católica del Ecuador, Quito. 2015.

E. Dadachova et al., “Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi”, PLoS ONE, vol. 2, no. 5, p. e457, 2007. Disponible: 10.1371/journal.pone.0000457 [Consultado: 03-oct-2022].

Y. Prasad, y D. Sachin, “Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms”, Asian Journal of Experimental Biological Sciences, vol 4, no. 2, pp. 190-195, 2013.

J. Peña Gonzalez, “Procesos de biorremediación en el tratamiento de residuos sólidos del cigarrillo,” Universidad Nacional de Colombia, Bogotá. 2017. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/62316

J.-D. Gu, D. T. Eberiel, S. P. McCarthy, y R. A. Gross, «Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments», J Environ Polym Degr, vol. 1, n.o 2, pp. 143-153, abr. 1993, doi: 10.1007/BF01418207.

C. J. Rivard et al., «Effects of natural polymer acetylation on the anaerobic bioconversion to methane and carbon dioxide», Appl Biochem Biotechnol, vol. 34, n.o 1, pp. 725-736, mar. 1992, doi: 10.1007/BF02920592.

J. Puls, S. A. Wilson, y D. Hölter, «Degradation of Cellulose Acetate-Based Materials: A Review», J Polym Environ, vol. 19, n.o 1, pp. 152-165, mar. 2011, doi: 10.1007/s10924-010-0258-0.

P. Biely, C. R. MacKenzie, J. Puls, y H. Schneider, «Cooperativity of Esterases and Xylanases in the Enzymatic Degradation of Acetyl Xylan», Nat Biotechnol, vol. 4, n.o 8, Art. n.o 8, ago. 1986, doi: 10.1038/nbt0886-731.

U. Tuor, K. Winterhalter, y A. Fiechter, «Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay», Journal of Biotechnology, vol. 41, n.o 1, pp. 1-17, jul. 1995, doi: 10.1016/0168-1656(95)00042-O.

E. Fernández-Fueyo et al., «A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus», Biotechnology for Biofuels, vol. 9, n.o 1, p. 49, feb. 2016, doi: 10.1186/s13068-016-0462-9.

C. Altaner et al., «Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families», Journal of Biotechnology, vol. 105, n.o 1, pp. 95-104, oct. 2003, doi: 10.1016/S0168-1656(03)00187-1.

I. Ferreira da Silva, J. M. Rodrigues da Luz, S. F. Oliveira, J. Humberto de Queiroz, y M. C. Megumi Kasuya, «High-yield cellulase and LiP production after SSF of agricultural wastes by Pleurotus ostreatus using different surfactants», Biocatalysis and Agricultural Biotechnology, vol. 22, p. 101428, nov. 2019, doi: 10.1016/j.bcab.2019.101428.

M. S. Rahman, S. Fernando, B. Ross, J. Wu, y W. Qin, «Endoglucanase (EG) Activity Assays», Methods Mol Biol, vol. 1796, pp. 169-183, 2018, doi: 10.1007/978-1-4939-7877-9_13.

R. M. Yennamalli, A. J. Rader, A. J. Kenny, J. D. Wolt, y T. Z. Sen, «Endoglucanases: insights into thermostability for biofuel applications», Biotechnology for Biofuels, vol. 6, n.o 1, p. 136, sep. 2013, doi: 10.1186/1754-6834-6-136.

M. Hosseni, «Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts», Woodhead Publishing, 1st ed. 2019. [En línea]. Disponible en: https://www.elsevier.com/books/advanced-bioprocessing-for-alternative-fuels-biobased-chemicals-and-bioproducts/hosseini/978-0-12-817941-3

R. Updyke, «Biodegradation and Feasibility of Three Pleurotus Species on Cigarette Filters», The University of Maine, may. 2014. [En línea]. Disponible en: https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1191&context=honors

Jiménez, A.Reciclar colillas de cigarro en pro de economía circular - WORTEV. WORTEV Acelerador. Ecofilter. (2022, 29 junio). [En línea]. Disponible en : https://wortev.com/historias-de-emprendedores/esta-empresa-recicla-las-colillas-de-cigarro-para-contribuir-a-la-economia-circular/.

da Luz J, Paes S, Nunes M, da Silva M , Kasuya M. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus. PLoS One. 2013;8(8):1–8.

Cavazzalli JRP, Brito MS, Oliveira MGA, Villas-Bôas SG, Kazuya MCM. Lignocellulolytic enzymes profile of three Lentinula edodes (Berk.) Pegler strains during cultivation on eucalyptus bark-based medium. Food Agric Environ. 2004;2: 291–297.

Pérez SR, Oduardo NG, Savón RCB, Boizán MF, Augur C. Decolourisation of mushroom farm wastewater by Pleurotus ostreatus. Biodegradation. 2009;19: 519–526.

Sánchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27: 185–194. pmid:19100826.

Cohen R, Persky L, Hadar Y. Biotechnological applica-tions and potential of wood-degrading mushrooms of the genusPleurotus. Appl Microbiol Biotechnol. 2002;58: 582–594. pmid:11956739.

Lamia, MH, Farid, Z., Sonia, MA, Sevastianos, R., Samia, A., Véronique, D. y Mouloud K. Selective isolation and screening of actinobacteria strains producing lignocellulolytic enzymes using olive pomace as substrate. iranian J Biotechnol. 2017; 15(1):74–7. Available from: https://doi: 10.15171 / ijb.1278

Mills, N. J., Plastics: Microstructure and Engineering Applications, (2005) Amsterdam: Butterworth-Heinemann. Elsevier. Fourth Edition. Cap 3.

J. M. Rath, R. A. Rubenstein, L. E. Curry, S. E. Shank, y J. C. Cartwright, “Cigarette Litter: Smokers’ Attitudes and Behaviors”, Int. J. Environ. Res. Public Health, vol. 9, núm. 6, pp. 2189–2203, jun. 2012.

L. C. Hernandez-Rubio, “Estrategias para la Degradación de Colillas de Cigarrillo.”, Universidad Javeriana, 2020. [En línea]. Disponible en: https://repository.javeriana.edu.co/bitstream/handle/10554/50285/trabajo%20de%20grado%20%20Laura%20Camila%20Hernandez%20Rubio.pdf?sequence=1&isAllowed=y [Consultado el 03-oct-22]

J. Kainthola, A. S. Kalamdhad, V. V. Goud, y R. Goel, “Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion”, Bioresour. Technol., vol. 286, p. 121368, ago. 2019.

K. Ziemiński, I. Romanowska, y M. Kowalska, “Enzymatic pretreatment of lignocellulosic wastes to improve biogas production”, Waste Manag., vol. 32, núm. 6, pp. 1131–1137, jun. 2012.

P. Wang et al., “Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw”, Renew. Energy, vol. 138, pp. 502–508, ago. 2019.

L. Rojas y C. Liliana, “Alternativas de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria”, Universidad Nacional Abierta y a Distancia, 2020. [En línea]. Disponible en: https://repository.unad.edu.co/handle/10596/33698. [Consultado: 03-oct-2022].

J. M. R. da Luz, S. A. Paes, K. V. G. Ribeiro, I. R. Mendes, y M. C. M. Kasuya, “Degradation of Green Polyethylene by Pleurotus ostreatus”, PLoS One, vol. 10, núm. 6, p. e0126047, jun. 2015.

M. Santo, R. Weitsman, y A. Sivan, “The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber”, Int. Biodeterior. Biodegradation, vol. 84, pp. 204–210, oct. 2016.

A. Sivan, “New perspectives in plastic biodegradation”, Curr. Opin. Biotechnol., vol. 22, núm. 3, pp. 422–426, jun. 2011.

E. F. Bermudez Lizarazo, “Estudio de factibilidad para el cultivo de hongo (Pleurotus sp) en la Finca Santa Elena del municipio de Suratá, Santander y comercialización en la ciudad de Bucaramanga y su área metropolitana,” Trabajo de grado, Universidad de Santander, 2019. [Online]. Available: https://repositorio.udes.edu.co/entities/publication/ff09734e-78c6-41f7-a597-6528fac8b290