Microalgas como sistemas de expresión para la producción de proteínas recombinantes
Contenido principal del artículo
Resumen
En el campo de la biotecnología, las proteínas recombinantes han revolucionado muchas
industrias, incluyendo la farmacéutica, la agricultura y la bioenergía. Al producir proteínas de
alto valor en huéspedes heterólogos, las fábricas celulares pueden ofrecer una solución más
eficiente, rentable, escalable y amigable con el ambiente, en comparación con la producción
de proteínas y métodos de extracción tradicionales, que pueden exigir muchos recursos y
mano de obra. Las microalgas han emergido como huéspedes atractivos debido a su estatus
como organismos Generalmente Reconocidos como Seguros (GRAS), su metabolismo versátil,
diversidad genética entre especies, facilidad de cultivo y escalabilidad y su rentabilidad general.
Para la ingeniería genética, su capacidad para síntesis compleja de proteínas y modificaciones
post-traduccionales y su relativa facilidad de transformación hacen a las microalgas una solución
ventajosa en muchos aspectos. Las microalgas pueden ser transformadas para permitir la
expresión eficiente de proteína, más comúnmente en el núcleo y el cloroplasto, cada uno con
sus ventajas y limitaciones. La presente revisión de literatura compila algunas de las técnicas,
características y últimos avances relacionados con la producción de proteínas recombinantes
en microalgas, explorando diferentes técnicas de transformación genética y sus limitaciones.
La producción recombinante de proteínas es solo uno de los muchos procesos que se pueden
convertir más sostenibles y eficientes al usar microalgas como una plataforma.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
N. K. Tripathi and A. Shrivastava, “Recent developments in bioprocessing of recombinant proteins: expression
hosts and process development,” Frontiers in Bioengineering and Biotechnology, vol. 7, p. 420, Dec. 20, 2019,
doi: 10.3389/fbioe.2019.00420.
L. Gifre, A. Arís, À. Bach, and E. Garcia-Fruitós, “Trends in recombinant protein use in animal production,”
Microbial Cell Factories, vol. 16, no. 40, Mar. 04, 2017, doi: 10.1186/s12934-017-0654-4.
B. Owczarek, A. Gerszberg, and K. Hnatuszko-Konka, “A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals,” BioMed Research International, 2019,
doi: 10.1155/2019/4216060.
L. Barolo et al., “Perspectives for glyco-engineering of recombinant biopharmaceuticals from microalgae,”
Cells, vol. 9, no. 3, Mar. 05, 2020, doi: 10.3390/cells9030633.
D. Castiglia, S. Landi, and S. Esposito, “Advanced applications for protein and compounds from microalgae,”
Plants, vol. 10, no. 8, Aug. 01, 2021, doi: 10.3390/plants10081686.
R. J. Leonardi, I. Niizawa, H. A. Irazoqui, and J. M. Heinrich, “Modeling and simulation of the influence of
fractions of blue and red light on the growth of the microalga Scenedesmus quadricauda,” Biochemical
Engineering Journal, vol. 129, pp. 16–25, Jan. 2018, doi: 10.1016/j.bej.2017.10.014.
M. Jarquín-Cordero et al., “Towards a biotechnological platform for the production of human pro-angiogenic
growth factors in the green alga Chlamydomonas reinhardtii,” Applied microbiology and biotechnology, vol.
, no. 2, pp. 725–739, Jan. 2020, doi: 10.1007/s00253-019-10267-6.
A. Banerjee and V. Ward, “Production of recombinant and therapeutic proteins in microalgae,” Current Opinion
in Biotechnology, vol. 78, Dec. 01, 2022, doi: 10.1016/j.copbio.2022.102784.
A. E. Sproles, F. J. Fields, T. N. Smalley, C. H. Le, A. Badary, and S. P. Mayfield, “Recent advancements in the
genetic engineering of microalgae,” Algal Research, vol. 53, Mar. 01, 2021, doi: 10.1016/j.algal.2020.102158.
Z. Xie, J. He, S. Peng, X. Zhang, and W. Kong, “Biosynthesis of protein-based drugs using eukaryotic microalgae,” Algal Research, vol. 74, Jul. 01, 2023, doi: 10.1016/j.algal.2023.103219.
A. Malla, S. Rosales-Mendoza, W. Phoolcharoen, and S. Vimolmangkang, “Efficient transient expression of
recombinant proteins using DNA viral vectors in freshwater microalgal species,” Frontiers in Plant Science, vol.
, Apr. 2021, doi: 10.3389/fpls.2021.650820.
I. de Grahl and S. Reumann, “Stramenopile microalgae as “green biofactories” for recombinant protein production,” World journal of microbiology & biotechnology, vol. 37, no. 9, p. 163, Aug. 2021, doi: 10.1007/s11274-
-03126-y.
M. Mosey, D. Douchi, E. P. Knoshaug, and L. M. L. Laurens, “Methodological review of genetic engineering approaches for non-model algae,” Algal Research, vol. 54. Elsevier B.V., Apr. 01, 2021, doi: 10.1016/j.
algal.2021.102221.
A. Watts, S. Sankaranarayanan, A. Watts, and R. K. Raipuria, “Optimizing protein expression in heterologous
system: strategies and tools,” Meta Gene, vol. 29, p. 100899, 2021, doi: 10.1016/j.mgene.2021.100899.
M. R. Mallu, S. R. Golamari, S. R. C. K. Kotikalapudi, and R. Vemparala, “Overview of bacterial and yeast systems for protein expression,” Journal of Pharmaceutical Research International, vol. 33, no. 32A, pp. 113–118,
Jun. 2021, doi: 10.9734/jpri/2021/v33i32A31722.
J. Dehghani, K. Adibkia, A. Movafeghi, H. Maleki-Kakelar, N. Saeedi, and Y. Omidi, “Towards a new avenue
for producing therapeutic proteins: microalgae as a tempting green biofactory,” Biotechnology Advances, vol.
, May 01, 2020, doi: 10.1016/j.biotechadv.2019.107499.
Z. Schemczssen-Graeff et al., “Description of a serpin toxin in Loxosceles (Brown spider) venoms: cloning,
expression in baculovirus-infected insect cells and functional characterization,” International Journal of
Biological Macromolecules, vol. 183, pp. 1607–1620, 2021, doi: 10.1016/j.ijbiomac.2021.05.129.
E. De-Bona et al., “Production of a novel recombinant brown spider hyaluronidase in baculovirus-infected insect
cells,” Enzyme and microbial technology, vol. 146, p. 109759, 2021, doi: 10.1016/j.enzmictec.2021.109759.
C. Grose, Z. Putman, and D. Esposito, “A review of alternative promoters for optimal recombinant protein
expression in baculovirus-infected insect cells,” Protein expression and purification, vol. 186, p. 105924, 2021,
doi: 10.1016/j.pep.2021.105924.
H. Dahodwala and K. H. Lee, “The fickle CHO: a review of the causes, implications, and potential alleviation of
the CHO cell line instability problem,” Current opinion in biotechnology, vol. 60, pp. 128–137, Feb. 2019, doi:
1016/j.copbio.2019.01.011.
B. Bachhav, J. de Rossi, and L. Llanos Carlos D and Segatori, “Cell factory engineering: challenges and opportunities for synthetic biology applications,” Biotechnology and bioengineering, vol. 120, no. 9, pp. 2441–2459,
Mar. 2023. doi: 10.1002/bit.28365.
X. Zhu et al., “Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis
in plant cells,” Plant Communications, vol. 2, no. 5, p. 100229, 2021, doi: 10.1016/j.xplc.2021.100229.
O. C. Bolaños-Martínez, G. Mahendran, S. Rosales-Mendoza, and S. Vimolmangkang, “Current status and
perspective on the use of viral-based vectors in eukaryotic microalgae,” Marine Drugs, vol. 20, no. 7, Jun.
, doi: 10.3390/md20070434.
K. Wang et al., “The chloroplast genetic engineering of a unicellular green alga Chlorella vulgaris with two
foreign peptides co-expression,” Algal Research, vol. 54, Apr. 2021, doi: 10.1016/j.algal.2021.102214.
N. Shahar, T. Elman, R. Williams-Carrier, O. Ben-Zvi, I. Yacoby, and A. Barkan, “Use of plant chloroplast
RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas
reinhardtii,” Algal Research, vol. 60, p. 102535, 2021, doi: 10.1016/j.algal.2021.102535.
A. Vilatte, X. Spencer-Milnes, H. O. Jackson, S. Purton, and B. Parker, “Spray drying is a viable technology
for the preservation of recombinant proteins in microalgae,” Microorganisms, vol. 11, no. 2, Feb. 2023, doi:
3390/microorganisms11020512.
S. O. Bachurin, E. V Bovina, and A. A. Ustyugov, “Drugs in clinical trials for Alzheimer’s Disease: the major
trends,” Medicinal research reviews, vol. 37, no. 5, pp. 1186–1225, Jan. 2017, doi: 10.1002/med.21434.
K. Ma, L. Deng, H. Wu, and J. Fan, “Towards green biomanufacturing of high-value recombinant proteins using
promising cell factory: Chlamydomonas reinhardtii chloroplast,” Bioresources and Bioprocessing, vol. 9, no. 1,
Dec. 01, 2022, doi: 10.1186/s40643-022-00568-6.
A. Masi, F. Leonelli, V. Scognamiglio, G. Gasperuzzo, A. Antonacci, and M. A. Terzidis, “Chlamydomonas
reinhardtii: a factory of nutraceutical and food supplements for human health,” Molecules, vol. 28, no. 3, Feb.
, 2023, doi: 10.3390/molecules28031185.
D. P. Weeks, “Genetic transformation of Chlamydomonas nuclear, chloroplast, and mitochondrial genomes,”
in The Chlamydomonas Sourcebook: Volume 1: Introduction to Chlamydomonas and Its Laboratory Use, vol.
, pp. 325–343, 2023, doi: 10.1016/B978-0-12-822457-1.00018-2.
E. Cutolo, M. Tosoni, S. Barera, L. Herrera-Estrella, L. Dall’Osto, and R. Bassi, “A chimeric hydrolasePTXD transgene enables chloroplast-based heterologous protein expression and non-sterile cultivation of
Chlamydomonas reinhardtii,” Algal Research, vol. 59, Nov. 2021, doi: 10.1016/j.algal.2021.102429.
P. A. Salomé and S. S. Merchant, “A series of fortunate events: introducing Chlamydomonas as a reference
organism,” Plant Cell, vol. 31, no. 8, pp. 1682-1707, Aug. 01, 2019, doi: 10.1105/tpc.18.00952.
I. Weiner, Y. Feldman, N. Shahar, I. Yacoby, and T. Tuller, “CSO – A sequence optimization software for
engineering chloroplast expression in Chlamydomonas reinhardtii,” Algal Research, vol. 46, Mar. 2020, doi:
1016/j.algal.2019.101788.
T. Z. Emrich-Mills et al., “A recombineering pipeline to clone large and complex genes in Chlamydomonas,”
Plant Cell, vol. 33, no. 4, pp. 1161–1181, Apr. 2021, doi: 10.1093/plcell/koab024.
I. K. Blaby, M. J. Soto, and C. E. Blaby-Haas, “Functional genomics of Chlamydomonas reinhardtii,” in The
Chlamydomonas Sourcebook: Volume 1: Introduction to Chlamydomonas and Its Laboratory Use, vol. 1, pp.
–84, 2023, doi: 10.1016/B978-0-12-822457-1.00013-3.
S. Jareonsin and C. Pumas, “Advantages of heterotrophic microalgae as a host for phytochemicals production,” Frontiers in bioengineering and biotechnology, vol. 9, p. 628597, 2021, doi: 10.3389/fbioe.2021.628597
J. Boynton et al., “Chloroplast transformation in Chlamydomonas with high velocity microprojectiles,” Science,
vol. 240, no. 4858, pp. 1534-1538, Jun. 1988, doi: 10.1126/science.2897716.
J. I. Galarza, J. A. Gimpel, V. Rojas, B. O. Arredondo-Vega, and V. Henríquez, “Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering,” Algal Research, vol. 31, pp.
–297, Apr. 2018, doi: 10.1016/j.algal.2018.02.024.
S. Han et al., “Two foreign antimicrobial peptides expressed in the chloroplast of Porphyridium purpureum
possessed antibacterial properties,” Mar Drugs, vol. 20, no. 8, Jul. 2022, doi: 10.3390/md20080484.
B. Schiedlmeier et al., “Nuclear transformation of Volvox carteri,” Proceedings of the National Academy of
Sciences, vol. 91, no. 11, pp. 5080–5084, May 1994, doi: 10.1073/pnas.91.11.5080.
D. Jallet et al., “Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom,”
The new phytologist, vol. 228, no. 3, pp. 946–958, 2020, doi: 10.1111/nph.16744.
D. P. Simon, N. Anila, K. Gayathri, and R. Sarada, “Heterologous expression of β-carotene hydroxylase in
Dunaliella salina by Agrobacterium-mediated genetic transformation,” Algal Research, vol. 18, pp. 257–265,
, doi: 10.1016/j.algal.2016.06.017.
K. M. I. Bashir, M.-S. Kim, U. Stahl, and M.-G. Cho, “Agrobacterium-mediated genetic transformation of
Dictyosphaerium pulchellum for the expression of erythropoietin,” Journal of Applied Phycology, vol. 30, no. 6,
pp. 3503–3518, 2018, doi: 10.1007/s10811-018-1483-5.
J. P. Rathod, G. Prakash, R. Pandit, and A. M. Lali, “Agrobacterium-mediated transformation of promising oilbearing marine algae Parachlorella kessleri,” Photosynthesis Research, vol. 118, no. 1, pp. 141–146, 2013, doi:
1007/s11120-013-9930-2.
A. K. Sharma, M. Nymark, T. Sparstad, A. M. Bones, and P. Winge, “Transgene-free genome editing in marine
algae by bacterial conjugation – comparison with biolistic CRISPR/Cas9 transformation,” Scientific Reports,
vol. 8, no. 1, p. 14401, 2018, doi: 10.1038/s41598-018-32342-0.
W. Chungjatupornchai, P. Kitraksa, and S. Fa-aroonsawat, “Stable nuclear transformation of the oleaginous
microalga Neochloris oleoabundans by electroporation,” Journal of Applied Phycology, vol. 28, no. 1, pp.
–199, 2016, doi: 10.1007/s10811-015-0594-5.
J. Yan et al., “Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in
microalga Schizochytrium,” Applied microbiology and biotechnology, vol. 97, no. 5, pp. 1933–1939, Oct. 2012,
doi: 10.1007/s00253-012-4481-6.
D. Geng, Y. Wang, P. Wang, W. Li, and Y. Sun, “Stable expression of hepatitis B surface antigen gene
in Dunaliella salina (Chlorophyta),” Journal of Applied Phycology, vol. 15, no. 6, pp. 451–456, 2003, doi:
1023/B:JAPH.0000004298.89183.e5.
Y. Chen and H. Hu, “High efficiency transformation by electroporation of the freshwater alga Nannochloropsis
limnetica,” World journal of microbiology & biotechnology, vol. 35, no. 8, p. 119, 2019, doi: 10.1007/s11274-
-2695-9.
C. F. Muñoz et al., “Improved DNA/protein delivery in microalgae – A simple and reliable method for the
prediction of optimal electroporation settings,” Algal Research, vol. 33, pp. 448–455, 2018, doi: 10.1016/j.
algal.2018.06.021.
Y. Cui, J. Wang, P. Jiang, S. Bian, and S. Qin, “Transformation of Platymonas (Tetraselmis) subcordiformis
(Prasinophyceae, Chlorophyta) by agitation with glass beads,” World journal of microbiology & biotechnology,
vol. 26, no. 9, pp. 1653–1657, 2010, doi: 10.1007/s11274-010-0342-6.
I. I. Ozyigit and K. Yucebilgili Kurtoglu, “Particle bombardment technology and its applications in plants,”
Molecular biology reports, vol. 47, no. 12, pp. 9831–9847, Nov. 2020, doi: 10.1007/s11033-020-06001-5.
K. S. Chang, J. Kim, H. Park, S.-J. Hong, C.-G. Lee, and E. Jin, “Enhanced lipid productivity in AGP knockout
marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method,” Bioresource Technology, vol.
, p. 122932, 2020, doi: 10.1016/j.biortech.2020.122932.
C. Tan, S. Qin, Q. Zhang, P. Jiang, and F. Zhao, “Establishment of a micro-particle bombardment transformation system for Dunaliella salina,” Journal of microbiology, vol. 43, no. 4, pp. 361–365, Aug. 2005. https://
pubmed.ncbi.nlm.nih.gov/16145551/
H. Fischer, I. Robl, M. Sumper, and N. Kröger, “Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae),” Journal of
Phycology, vol. 35, no. 1, pp. 113–120, Feb. 1999, doi: 10.1046/j.1529-8817.1999.3510113.x.
N. Anila, A. Chandrashekar, G. A. Ravishankar, and R. Sarada, “Establishment of Agrobacterium tumefaciensmediated genetic transformation in Dunaliella bardawil,” European Journal of Phycology, vol. 46, no. 1, pp.
–44, Feb. 2011, doi: 10.1080/09670262.2010.550386.
C. D. Norzagaray-Valenzuela, L. J. Germán-Báez, M. A. Valdez-Flores, S. Hernández-Verdugo, L.M. Shelton,
and A. Valdez-Ortiz, “Establishment of an efficient genetic transformation method in Dunaliella tertiolecta
mediated by Agrobacterium tumefaciens,” Journal of microbiological methods, vol. 150, pp. 9–17, May 2018,
doi: 10.1016/j.mimet.2018.05.010.
B. Khatiwada, L. Kautto, A. Sunna, A. Sun, and H. Nevalainen, “Nuclear transformation of the versatile microalga Euglena gracilis,” Algal Research, vol. 37, pp. 178–185, 2019, doi: 10.1016/j.algal.2018.11.022.
Y. Dautor, P. Úbeda-Mínguez, T. Chileh, F. García-Maroto, and D. L. Alonso, “Development of genetic transformation methodologies for an industrially-promising microalga: Scenedesmus almeriensis,” Biotechnology
letters, vol. 36, no. 12, pp. 2551–2558, Sep. 2014, doi: 10.1007/s10529-014-1641-z.
J. George, T. Kahlke, R. M. Abbriano, U. Kuzhiumparambil, P. J. Ralph, and M. Fabris, “Metabolic engineering
strategies in diatoms reveal unique phenotypes and genetic configurations with implications for algal genetics
and synthetic biology,” Frontiers in bioengineering and biotechnology, vol. 8, p. 513, Jun. 2020, doi: 10.3389/
fbioe.2020.00513.
C. F. Muñoz, M. H. J. Sturme, S. D’Adamo, R. A. Weusthuis, and R. H. Wijffels, “Stable transformation of
the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation,” Algal
Research, vol. 39, p. 101453, 2019, doi: 10.1016/j.algal.2019.101453.
D.-W. Yang, J.-W. Syn, C.-H. Hsieh, C.-C. Huang, and L.-F. Chien, “Genetically engineered hydrogenases
promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT,” International Journal
of Hydrogen Energy, vol. 44, no. 5, pp. 2533–2545, 2019, doi: 10.1016/j.ijhydene.2018.11.088.
X. Ma, L. Yao, B. Yang, Y. K. Lee, F. Chen, and J. Liu, “RNAi-mediated silencing of a pyruvate dehydrogenase
kinase enhances triacylglycerol biosynthesis in the oleaginous marine alga Nannochloropsis salina,” Scientific
Reports, vol. 7, no. 1, p. 11485, 2017, doi: 10.1038/s41598-017-11932-4.
S.-L. Guo et al., “Establishment of an efficient genetic transformation system in Scenedesmus obliquus,”
Journal of Biotechnology, vol. 163, no. 1, pp. 61–68, 2013, doi: 10.1016/j.jbiotec.2012.10.020.
S. D’Adamo, R. Kormelink, D. Martens, M. J. Barbosa, and R. H. Wijffels, “Prospects for viruses infecting
eukaryotic microalgae in biotechnology,” Biotechnology Advances, vol. 54, p. 107790, 2022, doi: 10.1016/j.
biotechadv.2021.107790.
H. Endo, M. Yoshida, T. Uji, N. Saga, K. Inoue, and H. Nagasawa, “Stable nuclear transformation system for the
coccolithophorid alga Pleurochrysis carterae,” Scientific Reports, vol. 6, no. 1, p. 22252, 2016, doi: 10.1038/
srep22252.
R. L. Hawkins and M. Nakamura, “Expression of human growth hormone by the eukaryotic alga, Chlorella,”
Current Microbiology, vol. 38, no. 6, pp. 335–341, Jun. 1999, doi: 10.1007/PL00006813.
F. Akbari, A. Yari Khosroushahi, and H. Yeganeh, “Quaternary ammonium salt containing soybean oil: an
efficient nanosize gene delivery carrier for halophile green microalgal transformation,” Chemico-Biological
Interactions, vol. 225, pp. 80–89, 2015, doi: 10.1016/j.cbi.2014.10.006.
O. Spain and C. Funk, “Detailed characterization of the cell wall structure and composition of nordic green
microalgae,” Journal of agricultural and food chemistry, vol. 70, no. 31, pp. 9711–9721, Aug. 2022, doi:
1021/acs.jafc.2c02783.
O. Spain, M. Plöhn, and C. Funk, “The cell wall of green microalgae and its role in heavy metal removal,”
Physiologia Plantarum, vol. 173, no. 2, pp. 526–535, Oct. 2021, doi: 10.1111/ppl.13405.
I. C. F. Sampaio et al., “Microalgae cell wall hydrolysis using snailase and mechanical sand milling,” Algal
Research, vol. 78, p. 103425, 2024, doi: 10.1016/j.algal.2024.103425.
A. Siddiqui, Z. Wei, M. Boehm, and N. Ahmad, “Engineering microalgae through chloroplast transformation
to produce high-value industrial products,” Biotechnology and Applied Biochemistry, vol. 67, no. 1. WileyBlackwell Publishing Ltd, pp. 30-40, Jan. 01, 2020, doi: 10.1002/bab.1823.
S. E. Carrera-Pacheco, B. Hankamer, and M. Oey, “Environmental and nuclear influences on microalgal chloroplast gene expression,” Trends in Plant Science, vol. 28, no. 8. Elsevier Ltd, pp.955-967, Aug. 01, 2023, doi:
1016/j.tplants.2023.03.013.
P. Ahmad and F. Bano, “Posttranslational modifications in algae: role in stress response and biopharmaceutical production,” in Protein Modificomics: From Modifications to Clinical Perspectives, Elsevier, 2019, pp.
–337. doi: 10.1016/B978-0-12-811913-6.00012-6.
Q. Zhou and H. Qiu, “The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins,” Journal of Pharmaceutical Sciences, vol. 108, no. 4. Elsevier B.V., pp. 1366-
, Apr. 01, 2019, doi: 10.1016/j.xphs.2018.11.029.
S. Y. Kim, K. W. Kim, Y. M. Kwon, and J. Y. H. Kim, “mCherry protein as an in vivo quantitative reporter of
gene expression in the chloroplast of Chlamydomonas reinhardtii,” Molecular biotechnology, vol. 62, no. 5, pp.
–305, May 2020, doi: 10.1007/s12033-020-00249-9.
R. Beauchemin et al., “Successful reversal of transgene silencing in Chlamydomonas reinhardtii,” Biotechnology
Journal, vol. 19, no. 1, Jan. 2024, doi: 10.1002/biot.202300232.
A. Suttangkakul et al., “Evaluation of strategies for improving the transgene expression in an oleaginous
microalga Scenedesmus acutus,” BMC Biotechnology, vol. 19, no. 1, Jan. 2019, doi: 10.1186/s12896-018-
-z.
P. Dementyeva et al., “A novel, robust and mating-competent Chlamydomonas reinhardtii strain with an enhanced transgene expression capacity for algal biotechnology,” Biotechnology Reports, vol. 31, Sep. 2021, doi:
1016/j.btre.2021.e00644.
E. A. Cutolo, G. Mandalà, L. Dall’osto, and R. Bassi, “Harnessing the algal chloroplast for heterologous protein
production,” Microorganisms, vol. 10, no. 4. MDPI, Apr. 01, 2022, doi: 10.3390/microorganisms10040743.
M. Larrea-Alvarez and S. Purton, “Multigenic engineering of the chloroplast genome in the green alga
Chlamydomonas reinhardtii,” Microbiology (United Kingdom), vol. 166, no. 6, pp. 510–515, 2020, doi: 10.1099/
mic.0.000910.
K. C. Kwon, A. Lamb, D. Fox, and S. J. Porphy Jegathese, “An evaluation of microalgae as a recombinant
protein oral delivery platform for fish using green fluorescent protein (GFP),” Fish & Shellfish Immunology, vol.
, pp. 414–420, Apr. 2019, doi: 10.1016/j.fsi.2019.01.038.
F. Colina, M. Carbó, M. Meijón, M. J. Cañal, and L. Valledor, “Low UV-C stress modulates Chlamydomonas
reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes
involving novel signalers and effectors,” Biotechnology for Biofuels, vol. 13, no. 1, Jun. 2020, doi: 10.1186/
s13068-020-01750-8.
C. Fajardo, M. De Donato, R. Carrasco, G. Martínez-Rodríguez, J. M. Mancera, and F. J. Fernández-Acero,
“Advances and challenges in genetic engineering of microalgae,” Reviews in Aquaculture, vol. 12, no. 1.
Wiley-Blackwell, pp. 365-381, Feb. 01, 2020, doi: 10.1111/raq.12322.