A low cost collision avoidance system based on a ToF camera for SLAM approaches
Main Article Content
Abstract
Indoor positioning is a problem that has not yet been solved efficiently and accurately. In outdoors the most effective solution is the Global Position System (GPS), but it cannot be used indoors due to the weakening of the signal, so other solutions have been studied. These approaches could be applied to define a map for the guidance of blind people, tourism or navigation for autonomous robots. In this paper, the study, design, implementation and evaluation of a robust obstacle detection and mapping system is proposed. Thus, it can be used to alert of near objects presence and avoid possible collisions in an indoor navigation. The system is based on a Time-of-Flight (ToF) camera and a Single Board Computer (SBC) like Raspberry PI or NVIDIA Jetson Nano. In order to evaluate the system several real experiments were carried out. This kind of system can be integrated on a wheelchair and help the handicapped person to move indoors or take data from an indoor environment and recreate it in a 2D or 3D images.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Bello, S.A., Yu, S., Wang, C., Adam, J.M., Li, J.: deep learning on 3d point clouds. Remote Sensing 12(11), 1729 (2020)
Gao, C., Harle, R.: Semi-automated signal surveying using smartphones and floor- plans. IEEE Transactions on Mobile Computing 17(8), 1952–1965 (2017)
He, Y., Chen, S.: Recent advances in 3d data acquisition and pro- cessing by time-of-flight camera. IEEE Access 7, 12495–12510 (2019). https://doi.org/10.1109/ACCESS.2019.2891693
Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P., Munich, M.E.: The vslam algorithm for robust localization and mapping. In: Proceedings of the 2005 IEEE international conference on robotics and automation. pp. 24–29. IEEE (2005)
Paredes, J.A., A´lvarez, F.J., Aguilera, T., Villadangos, J.M.: 3d indoor positioning of uavs with spread spectrum ultrasound and time-of-flight cameras. Sensors 18(1), 89 (2018)
Pasinetti, S., Hassan, M.M., Eberhardt, J., Lancini, M., Docchio, F., Sansoni, G.: Performance analysis of the pmd camboard picoflexx time-of-flight camera for markerless motion capture applications. IEEE Transactions on Instrumentation and Measurement 68(11), 4456–4471 (2019)
Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). In: 2011 IEEE inter- national conference on robotics and automation. pp. 1–4. IEEE (2011)
Tao Peng, Dingnan Zhang, D.L.N.H.J.L.: An evaluation of embedded gpu systems for visual slam algorithms. Electronic Imaging p. 325 (2020). https://doi.org/10.2352/ISSN.2470-1173.2020.6.IRIACV-325
Vujovíc, V., Maksimovíc, M.: Raspberry pi as a wireless sensor node: Performances and constraints. In: 2014 37th International Convention on Information and Com- munication Technology, Electronics and Microelectronics (MIPRO). pp. 1013–1018 (2014). https://doi.org/10.1109/MIPRO.2014.6859717
Wang, Y.T., Peng, C.C., Ravankar, A.A., Ravankar, A.: A single lidar-based feature fusion indoor localization algorithm. Sensors 18(4), 1294 (2018)
Zhang, H., Ye, C.: An indoor wayfinding system based on geometric fea- tures aided graph slam for the visually impaired. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25(9), 1592–1604 (2017). https://doi.org/10.1109/TNSRE.2017.2682265