Development and testing of a system for remote wind speed sensing
Main Article Content
Abstract
The main parameter in the field of wind energy is the wind speed, being able to measure it in an autonomous way allow to know the wind resource in remote areas, an also providing greater efficiency in the task of operating and studying wind turbines. Measuring a parameter with much variability as wind speed presents various challenges such as the capacity to take enough samples, the capacity to ensure the validity of the measurements and the requirement of an accessible place to record these measurements. This work develops a low-cost solution applying the Internet of Things to measure and logging wind speed data while seeking to solve the above challenges. In this design a cup anemometer was linked to an ESP32 microcontroller and using a computational algorithm programmed in C was responsible for determining the wind speed and publishing the result on the Internet in real time. A commercial anemometer was used, and the manufacturer’s software was replaced by an own solution. The validation tests required by the design were performed using the wind tunnel of the Universidad de Costa Rica. This work result in the construction of a system with the ability to record wind speed data in real time, as well as a basis for a more complete system in the study of additional parameters in the operation of wind turbines.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
K. R. Rao, Wind Energy for Power Generation: Meeting the Challenge of Practical Implementation, Springer Link, 2019.
H. Wagner y J. Mathur, Introduction to Wind Energy Systems: Basics, Technology and Operation, Springer Link, 2018.
International Electrotechnical Commission, IEC 61400-12-1:2017: Wind energy generation systems - Part 12-1: Power performance measurements of electricity producing wind turbines, 2017.
R. Menke, N. Vasiljević, J. Wagner, S. P. Oncley y J. Mann, «Multi-lidar wind resource mapping in complex terrain,» Wind Energy Science, pp. 1059-1073, 2020.
J. Gottschall, A. Papetta, H. Kassem, P. J. Meyer, L. Schrempf, C. Wetzel y J. Becker, «Advancing Wind Resource Assessment in Complex Terrain with Scanning Lidar Measurements,» Wind Energy Science, p. 3280, 2021.
J. Gutiérrez, A. Orjuela y J. García, «Internet of Things Proposal for Measuring Wind Variables in a Smart Home Environment,» 2018.
K. Mikhaylov, A. Moiz, A. Pouttu, J. Martín Rapún y S. Ayuso Gascon, «LoRaWAN for Wind Turbine Monitoring: Prototype and Practical Deployment,» IEEE Xplore, 2018.
L. Alhmoud y H. Al Zoubi, «IoT Applications in Wind Energy Conversion Systems,» 2019.
H. Shahinzadeh, J. Moradi, G. Gharehpetian, H. Nafisi y M. Abedi, «Internet of Energy (IoE) in Smart Power Systems,» IEEE Xplore, 2019.
N. Hossein, J. Hunt, B. Zakeri y M. Mohammadrezaei, «Internet of Things (IoT) and the Energy Sector,» Energies, 2020.
K. J. Singh y D. S. Kapoor, «A survey of IoT platforms: Create Your Own Internet of Things,» IEEE Xplore, 2017.
J. Ding, M. Nemati, C. Ranaweera y J. Choi, «IoT Connectivity Technologies and Applications: A Survey,» IEEE Access, 2020.
P. Marcon, F. Zezulka, I. Vesely, Z. Szabo, Z. Roubal, O. Sajdl, E. Gescheidtova y P. Dohnal, «Communication Technology for Industry 4.0,» IEEE Xplore, 2017.
Inspeed, «inspeed.com,» [En línea]. Available: http://www.old.inspeed.com/default.asp.
Heltec Automation, «Heltec Automation,» [En línea]. Available: https://heltec.org/.
N. Kostreski y D. Grimm, Atmospheric Boundary Layer Tunnel Operations: Manual, 2017.
N. Martinez y J. Rojas, «Github,» 2021. [En línea]. Available: https://github.com/DeltaLabo/anemos/tree/master/Velocidad.
International Organization for Standardization, ISO 17713-1:2007: Meteorology - Wind Measurements, 2007.
D. Montgomery y G. Runger, Probabilidad y estadística aplicadas a la ingeniería, 2003.
C. S. Choi, J. D. Jeong, I. W. Lee y W. K. Park, «LoRa based Renewable Energy Monitoring System with Open IoT Platform,» 2018.