Main wind tunnels in wind energy research around the world
Main Article Content
Abstract
A literature review about the most relevant wind tunnels in wind energy research is presented. A systematic search was carried in the Web of Science (WoS) database in which 93 papers were filtered by year from 2016 to 2020 and different relevance criteria. From the papers, 34 different wind tunnels were identified around the world. The eight tunnels with the most publications were selected and the research carried in them is presented. The main topics found are research in horizontal wind turbines (HAWT), vertical wind turbines (VAWT), turbine wake, airfoils and wind resource. This review has the objective to serve as a reference guide to researchers in wind energy that require to do experimentation in a wind tunnel.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
J. K. Calautit, H. N. Chaudhry, B. R. Hughes, and L. F. Sim, “A validated design methodology for a closed-loop subsonic wind tunnel,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 125, pp. 180–194, 2014, doi: 10.1016/j.jweia.2013.12.010.
O. D. Almeida, F. C. De Miranda, O. F. Neto, and F. G. Saad, “Low Subsonic Wind Tunnel – Design and Construction,” Journal of Aerospace Technology and Management, vol. 10, feb 2018, doi: 10.5028/jatm.v10.716.
J. G. Monge Gapper, “Dimensionado y construcción de un túnel de viento de baja velocidad,” Revista de la Universidad de Costa Rica, vol. 16, pp. 45–54, 2006, doi: 10.15517/RING.V16I2.665.
K. Dai, A. Bergot, C. Liang, W. N. Xiang, and Z. Huang, “Environmental issues associated with wind energy – A review,” Renewable Energy, vol. 75, pp. 911–921, mar 2015, doi: 10.1016/j.renene.2014.10.074.
M. S. Nazir, A. J. Mahdi, M. Bilal, H. M. Sohail, N. Ali, and H. M. Iqbal, “Environmental impact and pollution-related challenges of renewable wind energy paradigm – A review,” Science of The Total Environment, vol. 683, pp. 436–444, sep 2019, doi: 10.1016/j.scitotenv.2019.05.274.
I. Bayati, M. Belloli, L. Bernini, and A. Zasso, “Aerodynamic design methodology for wind tunnel tests of wind turbine rotors,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 167, pp. 217–227, aug 2017, doi: 10.1016/j.jweia.2017.05.004.
J. B. Barlow, W. H. Rae, and A. Pope, Low-speed wind tunnel testing. John Wiley & Sons, Ltd, 3rd ed., 1999.
P. Bradshaw and R. Pankhurst, “The design of low-speed wind tunnels,” Progress in Aerospace Sciences, vol. 5, pp. 1–69, jan 1964, doi: 10.1016/0376-0421(64)90003-X.
S. Jara Romero and D. Millacáriz González, Diseño y Construcción de un Túnel de Viento con Fines Académicos para el Estudio de Flujos Externos. PhD thesis, Universidad Tecnológica Metropolitana, 2018.
Q. Li et al., “Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test,” Renewable Energy, vol. 90, pp. 291–300, may 2016, doi: 10.1016/j.renene.2016.01.002.
L. Battisti et al., “Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions,” Energy, vol. 111, pp. 484–497, sep 2016, doi: 10.1016/j.energy.2016.05.080.
U. Göltenbott, Y. Ohya, S. Yoshida, and P. Jamieson, “Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems,” Renewable Energy, vol. 112, pp. 25–34, nov 2017, doi: 10.1016/j.renene.2017.05.014.
W. Xie, P. Zeng, and L. Lei, “Wind tunnel testing and improved blade element momentum method for umbrella-type rotor of horizontal axis wind turbine,” Energy, vol. 119, pp. 334–350, jan 2017, doi: 10.1016/j.energy.2016.12.051.
H. Tang, K. M. Lam, K. M. Shum, and Y. Li, “Wake Effect of a Horizontal Axis Wind Turbine on the Performance of a Downstream Turbine,” Energies, vol. 12, p. 2395, jun 2019, doi: 10.3390/en12122395.
Y. X. Peng, Y. L. Xu, S. Zhan, and K. M. Shum, “High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 184, pp. 34–48, jan 2019, doi: 10.1016/j.jweia.2018.11.005.
D. W. Wekesa, C. Wang, Y. Wei, and W. Zhu, “Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 157, pp. 1-14, oct 2016, doi: 10.1016/j.jweia.2016.07.018.
Q. Li, T. Maeda, Y. Kamada, Y. Hiromori, A. Nakai, and T. Kasuya, “Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 164, pp. 1–12, may 2017, doi: 10.1016/j.jweia.2017.02.005.
B. Dou, M. Guala, P. Zeng, and L. Lei, “Experimental investigation of the power performance of a minimal wind turbine array in an atmospheric boundary layer wind tunnel,” Energy Conversion and Management, vol. 196, pp. 906–919, sep 2019, doi: 10.1016/j.enconman.2019.06.056.
Z. Wang, A. Ozbay, W. Tian, and H. Hu, “An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine,” Energy, vol. 147, pp. 94–109, mar 2018, doi: 10.1016/j.energy.2018.01.020.
H. Peng and H. Lam, “Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations,” Energy, vol. 109, pp. 557–568, aug 2016, doi: 10.1016/j.energy.2016.04.100.
M. H. Lee, Y. Shiah, and C. J. Bai, “Experiments and numerical simulations of the rotor-blade performance for a small-scale horizontal axis wind turbine,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 149, pp. 17–29, feb 2016, doi: 10.1016/j.jweia.2015.12.002.
W. C. Wang, J. J. Wang, and W. T. Chong, “The effects of unsteady wind on the performances of a newly developed cross-axis wind turbine: A wind tunnel study,” Renewable Energy, vol. 131, pp. 644–659, feb 2019, doi: 10.1016/j.renene.2018.07.061.
X. Li, K. Yang, and X. Wang, “Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance,” Energies, vol. 12, p. 959, mar 2019, doi: 10.3390/en12050959.
S. Rockel, J. Peinke, M. Hölling, and R. B. Cal, “Wake to wake interaction of floating wind turbine models in free pitch motion: An eddy viscosity and mixing length approach,” Renewable Energy, vol. 85, pp. 666–676, jan2016, doi: 10.1016/j.renene.2015.07.012.
G. Vita, A. Šarkić-Glumac, H. Hemida, S. Salvadori, and C. Baniotopoulos, “On the Wind Energy Resource above High-Rise Buildings,” Energies, vol. 13, p. 3641, jul 2020, doi: 10.3390/en13143641.
H. F. Müller-Vahl, C. N. Nayeri, C. O. Paschereit, and D. Greenblatt, “Dynamic stall control via adaptive blowing,” Renewable Energy, vol. 97, pp. 47–64, nov 2016, doi: 10.1016/j.renene.2016.05.053.
D. Baldacchino, C. Ferreira, D. D. Tavernier, W. Timmer, and G. J. W. van Bussel, “Experimental parameter study for passive vortex generators on a 30% thick airfoil,” Wind Energy, vol. 21, pp. 745–765, sep 2018, doi: 10.1002/we.2191.
L. Zhang, X. Li, S. Li, J. Bai, and J. Xu, “Unstable aerodynamic performance of a very thick wind turbine airfoil CAS-W1-450,” Renewable Energy, vol. 132, pp. 1112–1120, mar 2019, doi: 10.1016/j.renene.2018.08.086.
Q. Li, Z. Shu, and F. Chen, “Performance assessment of tall building-integrated wind turbines for power generation,” Applied Energy, vol. 165, pp. 777–788, mar 2016, doi: 10.1016/j.apenergy.2015.12.114.
G. Wang, L. Zhang, and W. Z. Shen, “LES simulation and experimental validation of the unsteady aerodynamics of blunt wind turbine airfoils,” Energy, vol. 158, pp. 911–923, sep 2018, doi: 10.1016/j.energy.2018.06.093.
H. Kozmar, D. Allori, G. Bartoli, and C. Borri, “Wind characteristics in wind farms situated on a hilly terrain,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 174, pp. 404–410, mar 2018, doi: 10.1016/j.jweia.2018.01.008.
J. Ye et al., “Effects of divergent angle on the flow behaviors in low speed wind accelerating ducts,” Renewable Energy, vol. 152, pp. 1292–1301, jun 2020, doi: 10.1016/j.renene.2020.01.068.
L. Gao, Y. Liu, L. Ma, and H. Hu, “A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation,” Renewable Energy, vol. 140, pp. 943–956, sep 2019, doi: 10.1016/j.renene.2019.03.112.
A. Downey, S. Laflamme, and F. Ubertini, “Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade,” Smart Materials and Structures, vol. 26, p. 125005, dec 2017, doi: 10.1088/1361-665X/aa9349.
A. Vergaerde, T. De Troyer, A. Carbó Molina, L. Standaert, and M. Runacres, “Design, manufacturing and validation of a vertical-axis wind turbine setup for wind tunnel tests,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 193, p. 103949, oct 2019, doi: 10.1016/j.jweia.2019.103949.
Y. T. Wu, C. Y. Lin, and C. M. Hsu, “An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios,” Energies, vol. 13, p. 2113, apr 2020, doi: 10.3390/en13082113.
M. Ge, Y. Wu, Y. Liu, and X. I. Yang, “A two-dimensional Jensen model with a Gaussian-shaped velocity deficit,” Renewable Energy, vol. 141, pp. 46–56, oct 2019, doi: 10.1016/j.renene.2019.03.127.
G. Tomasini, D. Tarsitano, and S. Giappino, “A centimetre-scale bi-directional wind turbine for energy harvesting applications: design and experimental tests,” Smart Materials and Structures, vol. 28, p. 105048, oct 2019, doi: 10.1088/1361-665X/ab38f7.
T. Uchida and K. Sugitani, “Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain,” Energies, vol. 13, p. 3896, jul 2020, doi: 10.3390/en13153896.
N. Chrysochoidis-Antsos, A. V. Amoros, G. J. van Bussel, S. M. Mertens,and A. J. van Wijk, “Wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers – An experimental study,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 203, p. 104206, aug 2020, doi: 10.1016/j.jweia.2020.104206.
G. Vita, H. Hemida, T. Andrianne, and C. Baniotopoulos, “The effect of the integral length scale of turbulence on a wind turbine aerofoil,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 204, p. 104235, sep 2020, doi: 10.1016/j.jweia.2020.104235.
S. Rockel, J. Peinke, M. Hölling, and R. B. Cal, “Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent in flow generated with an active grid,” Renewable Energy, vol. 112, pp. 1–16, nov 2017, doi: 10.1016/j.renene.2017.05.016.
Q. Li et al., “Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer,” Energy, vol. 183, pp. 341–357, sep 2019, doi: 10.1016/j.energy.2019.06.150.
Q. Li et al., “Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements,” Energy, vol. 191, p. 116558, jan 2020, doi: 10.1016/j.energy.2019.116558.
Y. Yang, Z. Guo, Q. Song, Y. Zhang, and Q. Li, “Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations,” Energies, vol. 11, p. 1514, jun 2018, doi: 10.3390/en11061514.
L. Q. Sang, M. Takao, Y. Kamada, and Q. Li, “Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal in flow wind condition,” Energy, vol. 134, pp. 269–278, sep 2017, doi: 10.1016/j.energy.2017.06.042.
A. Vergaerde et al., “Experimental characterization of the wake behind paired vertical-axis wind turbines,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 206, p. 104353, nov 2020, doi: 10.1016/j.jweia.2020.104353.
N. Najafi and U. S. Paulsen, “Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique,” Energy, vol. 125, pp. 405–416, apr 2017, doi: 10.1016/j.energy.2017.02.133.
L. Battisti et al., “Experimental benchmark data for H-shaped and troposkien VAWT architectures,” Renewable Energy, vol. 125, pp. 425–444, sep 2018, doi: 10.1016/j.renene.2018.02.098.
I. Bayati, S. Foletti, D. Tarsitano, and M. Belloli, “A reference open data vertical axis wind turbine, with individual pitch control, for code validation purposes,” Renewable Energy, vol. 115, pp. 711–720, jan 2018, doi: 10.1016/j.renene.2017.08.090.
K. Watanabe, Y. Ohya, and T. Uchida, “Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct,” Energies, vol. 12, p. 3171, aug 2019, doi: 10.3390/en12163171.
K. Watanabe and Y. Ohya, “Multirotor Systems Using Three Shrouded Wind Turbines for Power Output Increase,” Journal of Energy Resources Technology, vol. 141, may 2019, doi: 10.1115/1.4042971.
G. Richmond-Navarro, P. Casanova-Treto, and F. Hernández-Castro, “Effect of a wind lens diffuser on turbulent flow,” Uniciencia, vol. 35, pp. 1–18, jul 2021, doi: 10.15359/ru.35-2.7.
S. Yoshida, K. Fujii, M. Hamasaki, and A. Takada, “Effect of Rotor Thrust on the Average Tower Drag of Downwind Turbines,” Energies, vol. 12, p. 227, jan 2019, doi: 10.3390/en12020227.
T. Uchida, “Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain,” Energies, vol. 13, p. 3745, jul 2020, doi: 10.3390/en13143745.
H. Meng, Z. Ma, B. Dou, P. Zeng, and L. Lei, “Investigation on the performance of a novel forward-folding rotor used in a downwind horizontal-axis turbine,” Energy, vol. 190, p. 116384, jan 2020, doi: 10.1016/j.energy.2019.116384.
J. Guo, P. Zeng, and L. Lei, “Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments,” Energy, vol. 174, pp. 553–561, may 2019, doi: 10.1016/j.energy.2019.02.177.
H. Su, B. Dou, T. Qu, P. Zeng, and L. Lei, “Experimental investigation of a novel vertical axis wind turbine with pitching and self-starting function,” Energy Conversion and Management, vol. 217, p. 113012, aug 2020, doi: 10.1016/j.enconman.2020.113012.
B. Dou, M. Guala, L. Lei, and P. Zeng, “Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions,” Applied Energy, vol. 242, pp. 1383–1395, may 2019, doi: 10.1016/j.apenergy.2019.03.164.
Y. X. Peng, Y. L. Xu, S. Zhu, and C. Li, “High-solidity straight-bladed vertical axis wind turbine: Numerical simulation and validation,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 193, p. 103960, oct2019, doi: 10.1016/j.jweia.2019.103960.
Y. X. Peng, Y. L. Xu, and S. Zhan, “A hybrid DMST model for pitch optimization and performance assessment of high-solidity straight-bladed vertical axis wind turbines,” Applied Energy, vol. 250, pp. 215–228, sep 2019, doi: 10.1016/j.apenergy.2019.04.127.
Y. L. Xu, Y. X. Peng, and S. Zhan, “Optimal blade pitch function and control device for high-solidity straight-bladed vertical axis wind turbines,” Applied Energy, vol. 242, pp. 1613–1625, may 2019, doi: 10.1016/j.apenergy.2019.03.151.
H. Peng, S. Dai, K. Lin, G. Hu, and H. Liu, “Experimental investigation of wind characteristics and wind energy potential over rooftops: Effects of building parameters,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 205, p. 104304, oct 2020, doi: 10.1016/j.jweia.2020.104304.
K. Lin, S. Xiao, A. Zhou, and H. Liu, “Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel,” Renewable Energy, vol. 159, pp. 1199–1214, oct 2020, doi: 10.1016/j.renene.2020.06.034.
X. L. Xiong, P. Lyu, W. L. Chen, and H. Li, “Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform,” Renewable Energy, vol. 156, pp. 328–341, aug 2020, doi: 10.1016/j.renene.2020.04.071.
N. Ren, Z. Ma, B. Shan, D. Ning, and J. Ou, “Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions,” Renewable Energy, vol. 151, pp. 966–974, may 2020, doi: 10.1016/j.renene.2019.11.095.
Q. Li, Y. Kamada, T. Maeda, and Y. Nishida, “Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of Horizontal Axis Wind Turbine in turbulent inflows,” Energy, vol. 135, pp. 799–810, sep 2017, doi: 10.1016/j.energy.2017.06.174.
Q. Li, Y. Kamada, T. Maeda, J. Murata, and Y. Nishida, “Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement),” Energy, vol. 112, pp. 574–587, oct 2016, doi: 10.1016/j.energy.2016.06.126.
Y. Kamada, Q. Li, T. Maeda, and K. Yamada, “Wind tunnel experimental investigation of flow field around two-dimensional single hill models,” Renewable Energy, vol. 136, pp. 1107–1118, jun 2019, doi: 10.1016/j.renene.2018.09.083.
B. Dou, Z. Yang, M. Guala, T. Qu, L. Lei, and P. Zeng, “Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels,” Energies, vol. 13, p. 1915, apr 2020, doi: 10.3390/en13081915.
H. Sun and H. Yang, “Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model,” Renewable Energy, vol. 147, pp. 192–203, mar2020, doi: 10.1016/j.renene.2019.08.122.
K. B. Howard and M. Guala, “Upwind preview to a horizontal axis wind turbine: a wind tunnel and field-scale study,” Wind Energy, vol. 19, pp. 1371–1389, aug 2016, doi: 10.1002/we.1901.