Costa Rica´s wind resource assessment: A case study for Cartago province
Main Article Content
Abstract
Wind resource assessment is essential for the development and implementation of wind power systems. Costa Rica have no studies by zones in a specific way as proposed, which allows professionals in the area to make decisions based on the potential and characteristics of the wind. This study provides for the first time the characterization of the wind resource in the province of Cartago. The characterization is carried out for the surface boundary layer, with data measured at 10 m above ground level, taking the magnitude of the wind speed and direction obtained from eight meteorological stations. During the characterization of the wind resource, the data was analyzed statistically and using computational codes that allowed obtaining results from the information collected. When processing the information provided by the meteorological stations, it is determined that the average wind speeds are between 3 m/s and 5 m/s at a height of 10 m above the surface. In addition, the intensity of turbulence is recorded between 15% and 30% and two well marked periods were determined in terms of the magnitude of the wind, from November to February for strong intensities and September to October for lower intensities. For the province of Cartago, the directions that predominate are the North or East components, being the two most recurrent components in the analyzed data.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
International Renewable Energy Agency, «Transformación Energética Mundial, hoja de ruta hasta el 2050,» IRENA, Abu Dhabi, 2018.
Global Wind Energy Council, «Global Wind Statistics,» Brussels, 2018.
L. Merino, «Estado de la Nación 2017,» Servicios Gráficos AC, Pavas, 2017.
L. M. Mora, «Programa País Carbono Neutralidad 2.0,» Dirección de Cambio Climático, 2017.
R. D. Bolaños, «Desarrollo de los proyectos de energía eólica en Costa Rica (1979-2005),» Centro de Investigaciones Geofísicas, San Pedro, 2006.
Ministerio de Ambiente y Energía, «Plan Nacional de Energía 2015-2030,» MINAE, San José, 2015.
Instituto Costarricense de Electricidad, «Plan de expansión de la generación eléctrica 2016-2035,» Proceso de expansión del sistema de dirección de planificación desarrollo eléctrico, San José, 2017.
Instituto Costarricense de Electricidad, «Plan de expansión de la generación eléctrica 2018-2034,» Proceso de expansión del sistema de la dirección de planificación y desarrollo eléctrico, San José, 2019.
J. B. Morales, «Energías Renovables no Convencionales,» San José, 2015.
T. Ackerman, F. Fernández, P. Schierhorn y F. Montoya, «Estudio de Red Costa Rica,» Energynautics, Darmstadt, 2017.
J. De la cruz, G. Valencia y M. Vanegas, «Estudio estadístico de la velocidad y la dirección del viento en los departamentos de Atlántico y Bolívar en Colombia,» Ingeniare, vol. 26, nº 2, pp. 319-328, 2017.
J. T. Millward-Hopkins, A. Tomlin, M. Pourkashanian, D. Ingham and L. Ma, «Mapping the Urban Wind Resource over UK Cities using an Analytical Downscaling Method,» Copenhagen, 2012.
P. Enevoldsen and F. Hendrik «Mapping the Wind Energy Potential of Sweden: A Sociotechnical Wind Atlas,» Hindawi, p. 11, 2018.
D. A. Fadare, «The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria,» Applied Energy, vol. 3, nº 87, pp. 934-942, 2010.
K. Ono and T. Uchida, «High-performance parallel simulation of airflow for complex terrain surface,» Hindawi, pp. 1-10, 2019.
D. Elliott, «Wind Resource Assessment and mapping for Afghanistan and Pakistan,» National Renewable Energy Laboratory, Colorado, 2011.
M. Landry, Y. Ouedraogo, Y Gagnon and A. Ouedraogo, «On the wind resource mapping of Burkina Faso,» International Journal of Green Energy, vol. 2, nº 14, pp. 150-156, 2017.
A. Prasad, R. A. Taylor and M. Kay, «Assessment of solar and wind resource synergy in Australia,» Applied Energy, pp. 354-367, 2017.
L. Li, X. Wang , L. Luo, Y. Zhao, X. Zong and N. Bachagha, « Mapping of wind energy potential over the Gobi Desert in Northwest China based on multiple sources of data,» Frontiers of Earth Science, vol. 2, nº 12, pp. 264-279, 2018.
B. R Furevik, A. M. Sempreviva, L. Cavaleri, J. M Lefèvre and C. Transerici, «Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea,» Wind Energy, vol. 3, nº 14, pp. 355-372, 2011.
C. Jung and D. Schindler, «3D statistical mapping of Germany’s wind resource using WSWS,» Energy Conversion and Management, nº 159, pp. 96-108, 2018.
L. Muñoz, «Decimoquinto informe Estado de la Nación en Desarrollo Humano Sostenible» Pavas, 2008.
M. Brower, J. W. Zack, B. Bailey, M. N Schwartz and D. L. Elliott «Mesoscale modeling as a tool for wind resource assessment and mapping,» National Renewable Energy Laboratory, Colorado, 2004.
Instituto de Desarrollo Rural, «Región Central Caracterización del Territorio Cartago-Oreamuno-El Guarco-La Unión,» 2016.
Instituto Meteorológico Nacional, «El clima, su variabilidad y cambio climático en Costa Rica,» San José, 2008.
R. Villalobos y J. Solano, «Regiones y subregiones climáticas de Costa Rica,» 2012.