Agentes químicos que dañan al ADN: inducción de genotoxicidad en la vida diaria, riesgo y prevención

Contenido principal del artículo

Virginia Montero-Campos
Ying Yi Huang-Qiu
Henry Rodríguez-Sevilla

Resumen

Los agentes genotóxicos son sustancias que tienen la capacidad de inducir daño en el ADN;
este daño puede ser causado por agentes químicos, biológicos y físicos. Su capacidad de
inducir daño está influida por la dosis recibida, el tiempo y la vía de exposición, y la constitución
genética del individuo, y puede estar relacionada con hábitos de vida y el lugar de residencia.
Relacionado directamente con la genotoxicidad está la epigenética; esta ciencia es el estudio
de los cambios en la función de los genes que son hereditarias y que no se pueden atribuir a
alteraciones de la secuencia de nucleótidos en el ADN. Estos procesos regulan la expresión
de genes por medio de la modulación de la estructura de la cromatina. La interacción de
factores genéticos y no genéticos involucrados en el control de patrones hereditarios puede
degenerar en enfermedades o trastornos complejos como cáncer, infertilidad, procesos
inflamatorios, enfermedades degenerativas y disrupción endocrina, padecimientos que pueden
ser transmitidos a la descendencia. Varios estudios epidemiológicos han demostrado que los
cambios en el estilo de vida y los hábitos alimentarios podrían prevenir o reducir la incidencia
del cáncer, especialmente mediante el aumento del nivel de antioxidantes y disminuyendo
la formación de radicales libres con efecto intracelular. En el Centro de Investigación en
Biotecnología del Instituto Tecnológico de Costa Rica se investigan diversos agentes genotóxicos
a los cuales está expuesto la población en Costa Rica, incluyendo bacterias como Helicobacter
pylori, microplásticos en especies marinas de consumo humano, y metales pesados en aguas
potables y en suelos. Estas investigaciones son relevantes para determinar la presencia de
estos agentes genotóxicos en el país, evaluar el riesgo de exposición de la población, y así
generar estrategias de prevención y mitigación del daño.


 

Detalles del artículo

Cómo citar
Montero-Campos, V., Huang-Qiu, Y. Y., & Rodríguez-Sevilla, H. (2024). Agentes químicos que dañan al ADN: inducción de genotoxicidad en la vida diaria, riesgo y prevención. Revista Tecnología En Marcha, 37(9), Pág. 176–185. https://doi.org/10.18845/tm.v37i9.7622
Sección
Artículo científico

Citas

B. Kopp, L. Khoury, and M. Audebert, “Validation of the γH2AX biomarker for genotoxicity assessment: a

review,” Archives of Toxicology, vol. 93, no. 8, pp. 2103–2114, Jul. 2019, doi: 10.1007/s00204-019-02511-9.

International Agency for Research on Cancer, “Agents Classified by the IARC Monographs, Volumes 1–128 –

IARC Monographs on the Identification of Carcinogenic Hazards to Humans,” monographs.iarc.who.int, Dec.

, 2023. https://monographs.iarc.who.int/agents-classified-by-the-iarc/

D. H. Phillips and V. M. Arlt, “Genotoxicity: damage to DNA and its consequences,” EXS, vol. 99, pp. 87–110,

, doi: 10.1007/978-3-7643-8336-7_4.

W.-J. Lim, K. H. Kim, J.-Y. Kim, S. Jeong, and N. Kim, “Identification of DNA-Methylated CpG Islands

Associated with Gene Silencing in the Adult Body Tissues of the Ogye Chicken Using RNA-Seq and Reduced

Representation Bisulfite Sequencing,” Frontiers in Genetics, vol. 10, pp. 1-15, Apr. 2019, doi: 10.3389/

fgene.2019.00346.

N. Ren, M. Atyah, W.-Y. Chen, and C.-H. Zhou, “The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications,” Journal of Translational Medicine, vol. 15, no. 1, pp. 7-10, May 2017,

doi: 10.1186/s12967-017-1218-4.

I. Lacal and R. Ventura, “Epigenetic Inheritance: Concepts, Mechanisms and Perspectives,” Frontiers in

Molecular Neuroscience, vol. 11, no. 292, pp. 2-11, Sep. 2018, doi: 10.3389/fnmol.2018.00292.

Y. Zhou, J. Liu, and L. Qian, “Epigenomic Reprogramming in Cardiovascular Disease,” Elsevier eBooks, pp.

–163, Jan. 2019, doi: 10.1016/b978-0-12-814513-5.00010-6.

C. Pagiatakis, E. Musolino, R. Gornati, G. Bernardini, and R. Papait, “Epigenetics of aging and disease: a brief

overview,” Aging Clinical and Experimental Research, vol. 33, pp. 737-745, Dec. 2019, doi: 10.1007/s40520-

-01430-0.

L. Zhang, Q. Lu, and C. Chang, “Epigenetics in Health and Disease,” Advances in Experimental Medicine and

Biology, vol. 1253, pp. 3–55, 2020, doi: 10.1007/978-981-15-3449-2_1.

I. El-Hefny, “Evaluation of Genotoxicity of Three Food Preservatives in Drosophila Melanogaster Using Smart

and Comet Assays”, Journal of Microbiology, Biotechnology and Food Sciences, vol. 10, no. 1, pp. 38–41, Aug.

, doi: 10.15414/jmbfs.2020.10.1.38-41.

I. S. Khan, Md. N. Ali, R. Hamid, and S. A. Ganie, “Genotoxic effect of two commonly used food dyes metanil

yellow and carmoisine using Allium cepa L. as indicator,” Toxicology Reports, vol. 7, pp. 370–375, 2020, doi:

1016/j.toxrep.2020.02.009.

M. Gea, S. Bonetta, L. Iannarelli, A. M. Giovannozzi, V. Maurino, S. Bonetta, V. D. Hodoroaba, C. Armato, A.

M. Rossi and T. Schilirò, “Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells,” vol. 127, pp. 89–100, May 2019, doi: 10.1016/j.fct.2019.02.043.

L. Bellani, S. Muccifora, F. Barbieri, E. Tassi, M. Ruffini Castiglione, and L. Giorgetti, “Genotoxicity of the

food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L.,” Mutation Research/

Genetic Toxicology and Environmental Mutagenesis, vol. 849, p. 503142, Jan. 2020, doi: 10.1016/j.mrgentox.2020.503142.

S. Mamur, D. Yüzbaşıoğlu, S. N. Bülbül, and F. Ünal, “Investigation of cyto-genotoxic effects of a food sweetener Acesulfame potassium,” Food and Health, vol. 8, no. 4, pp. 273–283, 2022, doi: 10.3153/fh22025.

F. F. Mohammed, E. G. Abdelrazik, A. Anwar, and S. S. Abdelgayed, “Hepatic P53 upregulation and the

genotoxic potential of acesulfame-K treatment in rats with a special emphasis on in vitro lymphocyte and

macrophage activity testing,” Human & experimental toxicology, vol. 43, pp. 1-9, Jan. 2024, doi: https://doi.

org/10.1177/09603271241236900.

E. Demir and Fatma Turna Demir, “Genotoxicity responses of single and mixed exposure to heavy metals (cadmium, silver, and copper) as environmental pollutants in Drosophila melanogaster,” Environmental toxicology

and pharmacology, vol. 106, pp. 104390–104390, Mar. 2024, doi10.1016/j.etap.2024.104390.

K. Kocadal, F. Alkas, D. Battal, and S. Saygi, “Cellular pathologies and genotoxic effects arising secondary to

heavy metal exposure: A review,” Human & Experimental Toxicology, vol. 39, no. 1, pp. 3–13, Sep. 2019, doi:

1177/0960327119874439

A. Poma, G. Vecchiotti, S. Colafarina, O. Zarivi, M. Aloisi, L. Arrizza, G. Chichiriccò, and P. D. Carlo, “In Vitro

Genotoxicity of Polystyrene Nanoparticles on the Human Fibroblast Hs27 Cell Line,” Nanomaterials, vol. 9, no.

, p. 1299, Sep. 2019, doi: 10.3390/nano9091299.

M. Roursgaard, M. Hezareh Rothmann, J. Schulte, I. Karadimou, E. Marinelli, and P. Møller, “Genotoxicity of

Particles from Grinded Plastic Items in Caco-2 and HepG2 Cells,” Frontiers in Public Health, vol. 10, pp. 1-15,

Jul. 2022, doi: 10.3389/fpubh.2022.906430.

M. Alzaben, R. Burve, K. Loeschner, P. Møller, and M. Roursgaard, “Nanoplastics from ground polyethylene

terephthalate food containers: Genotoxicity in human lung epithelial A549 cells,” Mutation research. Genetic

toxicology and environmental mutagenesis, vol. 892, pp. 503705–503705, Nov. 2023, doi: 10.1016/j.mrgentox.2023.503705.

A. Anet, S. Olakkaran, A. Kizhakke Purayil, and G. Hunasanahally Puttaswamygowda, “Bisphenol A induced

oxidative stress mediated genotoxicity in Drosophila melanogaster,” Journal of Hazardous Materials, vol. 370,

pp. 42–53, May 2019, doi: 10.1016/j.jhazmat.2018.07.050.

T. Qin, X. Zhang, T. Guo, T. Yang, Y. Gao, W. Hao, and X. F. Xiao, Epigenetic Alteration Shaped by the

Environmental Chemical Bisphenol A” Frontiers in Genetics, vol. 11, pp. 1-7, Jan. 2021, doi: 10.3389/

fgene.2020.618966.

V. Montero-Campos, Lucía Noboa-Jiménez, and L. Gómez-Vargas, “Toxicología de micro y nanoplásticos:

riesgo de tóxicos a dosis baja y cambios epigenéticos,” Tecnología en marcha, vol.36, no. 4, pp. 1-12 Oct.

, doi10.18845/tm.v36i4.6417.

S. Singh, “Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and

neurotoxicity,” Toxicology Mechanisms and Methods, vol. 29, no. 4, pp. 300–311, Jan. 2019, doi:

1080/15376516.2018.1553221.

T. R. Cardozo, R. F. De Carli, A. Seeber, W. H. Flores, J. A. N. da Rosa, Q. S. G. Kotzal, M. Lehmann, F. R.

da Silva, and R. R. Dihl, “Genotoxicity of zinc oxide nanoparticles: an in vivo and in silico study,” Toxicology

Research, vol. 8, no. 2, pp. 277–286, 2019, doi: 10.1039/c8tx00255j.

J. Bundschuh, J. P. Maity, S. Mushtaq, M. Vithanage, S. Seneweera, J. Schneider, P. Bhattacharya, N. I. Khan,

I. Hamawand, L. R. G. Guilherme, K. Reardon-Smith, F. Parvez, N. Morales-Simfors, S. Ghaze, C. Pudmenzky,

L. Kouadio, and C. Y. Chen, “Medical geology in the framework of the sustainable development goals,”

Science of The Total Environment, vol. 581–582, pp. 87–104, Mar. 2017, doi: 10.1016/j.scitotenv.2016.11.208.

M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, “Toxic Mechanisms of Five Heavy

Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic,” Frontiers in Pharmacology, vol. 12, no. 643972,

pp. 1-19 Apr. 2021, doi: 10.3389/fphar.2021.643972.

J. Menz, M. E. Götz, U. Gündel, R. Gürtler, K. Herrmann, S. Hessel-Pras, C. Kneuer, F. Kolrep, D. Nitzsche,

U. Pabel, B. Sachse, S. Schmeisser, D. M. Schumacher, T. Schwerdtle, T. Tralau, S. Zellmer, and B. Schäfer,

“Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose–

response data,” Archives of Toxicology, vol. 97, no. 9, pp. 2303–2328, Jul. 2023, doi: 10.1007/s00204-023-

-w.

M. Ozturk, M. Metin, V. Altay, R. A. Bhat, M. Ejaz, A. Gul, B. T. Unal, M. Hasanuzzaman, L. Nibir, K. Nahar, A.

Bukhari, M. A. Dervash, and T. Kawano, “Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and

Cancer Signaling,” Biological Trace Element Research, vol. 200, no. 3, pp. 988–1001, Apr. 2021, doi: 10.1007/

s12011-021-02719-w.

C. G. Alimba, C. Faggio, S. Sivanesan, A. L. Ogunkanmi, and K. Krishnamurthi, “Micro(nano)-plastics in the

environment and risk of carcinogenesis: Insight into possible mechanisms,” Journal of Hazardous Materials,

vol. 416, p. 126143, Aug. 2021, doi: 10.1016/j.jhazmat.2021.126143.

A. T. Batista Guimarães, F. Neves Estrela, P. S. Pereira a, J. E. de Andrade Vieira, A. S. de Lima Rodrigues,

F. Guimarães Silva, and G. Malafaia, “Toxicity of polystyrene nanoplastics in Ctenopharyngodon idella juveniles: A genotoxic, mutagenic and cytotoxic perspective,” Science of The Total Environment, vol. 752, pp.

–141937, Jan. 2021, doi: 10.1016/j.scitotenv.2020.141937.

K. A. Delmond, T. Vicari, I. C. Guiloski, A. C. Dagostim, C. L. Voigt, H. C. Silva de Assis, W. A. Ramsdorf, and

M. M. Cestari, “Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO2) and inorganic lead (PbII),” Environmental Toxicology and Pharmacology, vol. 67, pp. 42–52,

Apr. 2019, doi: 10.1016/j.etap.2019.01.009.

K. Shahzad, M. N. Khan, F. Jabeen, A. S. Chaudhry, M. K. Ahmad Khan, C. Ara, and M. S. Khan, “Study of

Some Toxicological Aspects of Titanium Dioxide Nanoparticles Through Oxidative Stress, Genotoxicity, and

Histopathology in Tilapia, Oreochromis mossambicus,” BioNanoScience, vol. 12, pp. 1116–1124, Aug. 2022,

doi: 10.1007/s12668-022-01024-7.

K. Shahzad, M. Naeem Khan, F. Jabeen, N. Kosour, A. Shakoor Chaudhry, M. Sohail, and N. Ahmad, “Toxicity

of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative

stress, histopathology and genotoxicity,” International Journal of Environmental Science and Technology, vol.

, no. 4, pp. 1973–1984, May 2018, doi: 10.1007/s13762-018-1807-7.

R. Belal and A. Gad, “Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the

hemocytes of Bombyx mori larvae,” Scientific Reports, vol. 13, no. 1, p. 3520, Mar. 2023, doi: 10.1038/s41598-

-30444-y.

L. Neeratanaphan, C. Kamollerd, P. Suwannathada, P. Suwannathada, and B. Tengjaroenkul, “Genotoxicity

and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill

Reservoir,” International Journal of Environmental Research and Public Health, vol. 17, no. 6, p. 1980, Mar.

, doi: 10.3390/ijerph17061980.

S. Hemmaphan and N. K. Bordeerat, “Genotoxic Effects of Lead and Their Impact on the Expression of DNA

Repair Genes,” vol. 19, no. 7, pp. 4307–4307, Apr. 2022, doi: 10.3390/ijerph19074307.

K. Hercog, S. Maisanaba, M. Filipič, M. Sollner-Dolenc, L. Kač, and B. Žegura, “Genotoxic activity of bisphenol

A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular

carcinoma (HepG2) cells,” Science of The Total Environment, vol. 687, pp. 267–276, Oct. 2019, doi: 10.1016/j.

scitotenv.2019.05.486.

M. Sendra, M. Štampar, K. Fras, B. Novoa, A. Figueras, and B. Žegura, “Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model,” Environment International, vol. 171, p. 107721, Jan. 2023,

doi: 10.1016/j.envint.2022.107721.

H. J. Forman and H. Zhang, “Targeting oxidative stress in disease: promise and limitations of antioxidant therapy,” Nature Reviews Drug Discovery, vol. 20, no. 9, pp. 689–709, Jun. 2021, doi: 10.1038/s41573-021-00233-1.

John, M. K. Ankem, and Chendil Damodaran, “Oxidative Stress: a Promising Target for Chemoprevention,”

Current Pharmacology Reports, vol. 2, no. 2, pp. 73–81, Feb. 2016, doi: 10.1007/s40495-016-0052-3.

V. Montero, A. Hernández, and J. C. Sandoval “Culture and Molecular Identification, of Helicobacter pylori

in Drinking Water from Areas of High and Low Incidence of Gastric Cancer in Costa Rica,”, Open Journal of

Medical Microbiology, vol. 4, mo. 4, pp. 261-269, Dec. 2014, doi:/10.4236/ojmm.2014.44030.

V. Montero, J. Quesada, A. Ledezma, and J. Sandoval, “Determination of arsenic in drinking water for human

consumption in the province of Cartago,”, Acta Médica Costarricense, vol. 52, no. 2, pp. 96-101, 2010.

B. Valdés-Rodríguez, V. Montero-Campos, and M. G. Siebecker, “Causes of Chronic Kidney Disease of NonTraditional Origin in Central America: An Approach Based on Medical Geology,”, Geosciences, vol. 13, no.

, pp. 1-12, Nov. 2023, doi: 10.3390/ geosciences13120360.

V. Montero, Y. Chinchilla, L. Gómez, A. Flores, A. Medaglia, R. Guillen, and E. Montero, “Human health

risk assessment for consumption of microplastics and plasticizing substances through marine species,”,

Environmental Research, vol. 237, no. 1, pp. 1-10, Aug. 2023, doi: 10.1016/j.envres.2023.116843

Artículos más leídos del mismo autor/a