DNA-damaging chemical agents: genotoxicity induction in daily life, risk and prevention

Main Article Content

Virginia Montero-Campos
Ying Yi Huang-Qiu
Henry Rodríguez-Sevilla

Abstract

Genotoxic agents are substances that can induce DNA damage; this damage can be caused by
chemical, biological, and physical agents. The dose, time and route of exposure, and the genetic
constitution of the individual influence the capacity of these agents to induce damage and may
also be related to lifestyle habits and place of residency. Directly associated with genotoxicity
is epigenetics, which is the study of hereditary changes in the function of hereditary genes
not attributed to alterations in the DNA sequence. These processes regulate the expression of
genes through the modulation of chromatin structure. The interaction of genetic and non-genetic
factors in the control of hereditary patterns of this expression may cause diseases or disorders
such as cancer, infertility, inflammatory processes, degenerative diseases, and endocrine
disruption that could be transmitted to the offspring. Several epidemiological studies have
shown that changes in lifestyle and eating habits could prevent or reduce cancer incidence;
particularly by increasing the level of antioxidants and reducing the formation of free radicals
with intracellular effects. At the Biotechnology Research Center of the Technological Institute
of Costa Rica, various genotoxic agents to which the population in Costa Rica is exposed are
investigated, including bacteria such as Helicobacter pylori, micro plastics in marine species
for human consumption, and heavy metals in drinking water and in soils. These investigations are relevant to determine the presence of these genotoxic agents in the country, to evaluate the
risk of exposure of the population, and thus generate strategies for prevention and mitigation of
the damage.

Article Details

How to Cite
Montero-Campos, V., Huang-Qiu, Y. Y., & Rodríguez-Sevilla, H. (2024). DNA-damaging chemical agents: genotoxicity induction in daily life, risk and prevention. Tecnología En Marcha Journal, 37(9), Pág. 176–185. https://doi.org/10.18845/tm.v37i9.7622
Section
Artículo científico

References

B. Kopp, L. Khoury, and M. Audebert, “Validation of the γH2AX biomarker for genotoxicity assessment: a

review,” Archives of Toxicology, vol. 93, no. 8, pp. 2103–2114, Jul. 2019, doi: 10.1007/s00204-019-02511-9.

International Agency for Research on Cancer, “Agents Classified by the IARC Monographs, Volumes 1–128 –

IARC Monographs on the Identification of Carcinogenic Hazards to Humans,” monographs.iarc.who.int, Dec.

, 2023. https://monographs.iarc.who.int/agents-classified-by-the-iarc/

D. H. Phillips and V. M. Arlt, “Genotoxicity: damage to DNA and its consequences,” EXS, vol. 99, pp. 87–110,

, doi: 10.1007/978-3-7643-8336-7_4.

W.-J. Lim, K. H. Kim, J.-Y. Kim, S. Jeong, and N. Kim, “Identification of DNA-Methylated CpG Islands

Associated with Gene Silencing in the Adult Body Tissues of the Ogye Chicken Using RNA-Seq and Reduced

Representation Bisulfite Sequencing,” Frontiers in Genetics, vol. 10, pp. 1-15, Apr. 2019, doi: 10.3389/

fgene.2019.00346.

N. Ren, M. Atyah, W.-Y. Chen, and C.-H. Zhou, “The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications,” Journal of Translational Medicine, vol. 15, no. 1, pp. 7-10, May 2017,

doi: 10.1186/s12967-017-1218-4.

I. Lacal and R. Ventura, “Epigenetic Inheritance: Concepts, Mechanisms and Perspectives,” Frontiers in

Molecular Neuroscience, vol. 11, no. 292, pp. 2-11, Sep. 2018, doi: 10.3389/fnmol.2018.00292.

Y. Zhou, J. Liu, and L. Qian, “Epigenomic Reprogramming in Cardiovascular Disease,” Elsevier eBooks, pp.

–163, Jan. 2019, doi: 10.1016/b978-0-12-814513-5.00010-6.

C. Pagiatakis, E. Musolino, R. Gornati, G. Bernardini, and R. Papait, “Epigenetics of aging and disease: a brief

overview,” Aging Clinical and Experimental Research, vol. 33, pp. 737-745, Dec. 2019, doi: 10.1007/s40520-

-01430-0.

L. Zhang, Q. Lu, and C. Chang, “Epigenetics in Health and Disease,” Advances in Experimental Medicine and

Biology, vol. 1253, pp. 3–55, 2020, doi: 10.1007/978-981-15-3449-2_1.

I. El-Hefny, “Evaluation of Genotoxicity of Three Food Preservatives in Drosophila Melanogaster Using Smart

and Comet Assays”, Journal of Microbiology, Biotechnology and Food Sciences, vol. 10, no. 1, pp. 38–41, Aug.

, doi: 10.15414/jmbfs.2020.10.1.38-41.

I. S. Khan, Md. N. Ali, R. Hamid, and S. A. Ganie, “Genotoxic effect of two commonly used food dyes metanil

yellow and carmoisine using Allium cepa L. as indicator,” Toxicology Reports, vol. 7, pp. 370–375, 2020, doi:

1016/j.toxrep.2020.02.009.

M. Gea, S. Bonetta, L. Iannarelli, A. M. Giovannozzi, V. Maurino, S. Bonetta, V. D. Hodoroaba, C. Armato, A.

M. Rossi and T. Schilirò, “Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells,” vol. 127, pp. 89–100, May 2019, doi: 10.1016/j.fct.2019.02.043.

L. Bellani, S. Muccifora, F. Barbieri, E. Tassi, M. Ruffini Castiglione, and L. Giorgetti, “Genotoxicity of the

food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L.,” Mutation Research/

Genetic Toxicology and Environmental Mutagenesis, vol. 849, p. 503142, Jan. 2020, doi: 10.1016/j.mrgentox.2020.503142.

S. Mamur, D. Yüzbaşıoğlu, S. N. Bülbül, and F. Ünal, “Investigation of cyto-genotoxic effects of a food sweetener Acesulfame potassium,” Food and Health, vol. 8, no. 4, pp. 273–283, 2022, doi: 10.3153/fh22025.

F. F. Mohammed, E. G. Abdelrazik, A. Anwar, and S. S. Abdelgayed, “Hepatic P53 upregulation and the

genotoxic potential of acesulfame-K treatment in rats with a special emphasis on in vitro lymphocyte and

macrophage activity testing,” Human & experimental toxicology, vol. 43, pp. 1-9, Jan. 2024, doi: https://doi.

org/10.1177/09603271241236900.

E. Demir and Fatma Turna Demir, “Genotoxicity responses of single and mixed exposure to heavy metals (cadmium, silver, and copper) as environmental pollutants in Drosophila melanogaster,” Environmental toxicology

and pharmacology, vol. 106, pp. 104390–104390, Mar. 2024, doi10.1016/j.etap.2024.104390.

K. Kocadal, F. Alkas, D. Battal, and S. Saygi, “Cellular pathologies and genotoxic effects arising secondary to

heavy metal exposure: A review,” Human & Experimental Toxicology, vol. 39, no. 1, pp. 3–13, Sep. 2019, doi:

1177/0960327119874439

A. Poma, G. Vecchiotti, S. Colafarina, O. Zarivi, M. Aloisi, L. Arrizza, G. Chichiriccò, and P. D. Carlo, “In Vitro

Genotoxicity of Polystyrene Nanoparticles on the Human Fibroblast Hs27 Cell Line,” Nanomaterials, vol. 9, no.

, p. 1299, Sep. 2019, doi: 10.3390/nano9091299.

M. Roursgaard, M. Hezareh Rothmann, J. Schulte, I. Karadimou, E. Marinelli, and P. Møller, “Genotoxicity of

Particles from Grinded Plastic Items in Caco-2 and HepG2 Cells,” Frontiers in Public Health, vol. 10, pp. 1-15,

Jul. 2022, doi: 10.3389/fpubh.2022.906430.

M. Alzaben, R. Burve, K. Loeschner, P. Møller, and M. Roursgaard, “Nanoplastics from ground polyethylene

terephthalate food containers: Genotoxicity in human lung epithelial A549 cells,” Mutation research. Genetic

toxicology and environmental mutagenesis, vol. 892, pp. 503705–503705, Nov. 2023, doi: 10.1016/j.mrgentox.2023.503705.

A. Anet, S. Olakkaran, A. Kizhakke Purayil, and G. Hunasanahally Puttaswamygowda, “Bisphenol A induced

oxidative stress mediated genotoxicity in Drosophila melanogaster,” Journal of Hazardous Materials, vol. 370,

pp. 42–53, May 2019, doi: 10.1016/j.jhazmat.2018.07.050.

T. Qin, X. Zhang, T. Guo, T. Yang, Y. Gao, W. Hao, and X. F. Xiao, Epigenetic Alteration Shaped by the

Environmental Chemical Bisphenol A” Frontiers in Genetics, vol. 11, pp. 1-7, Jan. 2021, doi: 10.3389/

fgene.2020.618966.

V. Montero-Campos, Lucía Noboa-Jiménez, and L. Gómez-Vargas, “Toxicología de micro y nanoplásticos:

riesgo de tóxicos a dosis baja y cambios epigenéticos,” Tecnología en marcha, vol.36, no. 4, pp. 1-12 Oct.

, doi10.18845/tm.v36i4.6417.

S. Singh, “Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and

neurotoxicity,” Toxicology Mechanisms and Methods, vol. 29, no. 4, pp. 300–311, Jan. 2019, doi:

1080/15376516.2018.1553221.

T. R. Cardozo, R. F. De Carli, A. Seeber, W. H. Flores, J. A. N. da Rosa, Q. S. G. Kotzal, M. Lehmann, F. R.

da Silva, and R. R. Dihl, “Genotoxicity of zinc oxide nanoparticles: an in vivo and in silico study,” Toxicology

Research, vol. 8, no. 2, pp. 277–286, 2019, doi: 10.1039/c8tx00255j.

J. Bundschuh, J. P. Maity, S. Mushtaq, M. Vithanage, S. Seneweera, J. Schneider, P. Bhattacharya, N. I. Khan,

I. Hamawand, L. R. G. Guilherme, K. Reardon-Smith, F. Parvez, N. Morales-Simfors, S. Ghaze, C. Pudmenzky,

L. Kouadio, and C. Y. Chen, “Medical geology in the framework of the sustainable development goals,”

Science of The Total Environment, vol. 581–582, pp. 87–104, Mar. 2017, doi: 10.1016/j.scitotenv.2016.11.208.

M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, “Toxic Mechanisms of Five Heavy

Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic,” Frontiers in Pharmacology, vol. 12, no. 643972,

pp. 1-19 Apr. 2021, doi: 10.3389/fphar.2021.643972.

J. Menz, M. E. Götz, U. Gündel, R. Gürtler, K. Herrmann, S. Hessel-Pras, C. Kneuer, F. Kolrep, D. Nitzsche,

U. Pabel, B. Sachse, S. Schmeisser, D. M. Schumacher, T. Schwerdtle, T. Tralau, S. Zellmer, and B. Schäfer,

“Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose–

response data,” Archives of Toxicology, vol. 97, no. 9, pp. 2303–2328, Jul. 2023, doi: 10.1007/s00204-023-

-w.

M. Ozturk, M. Metin, V. Altay, R. A. Bhat, M. Ejaz, A. Gul, B. T. Unal, M. Hasanuzzaman, L. Nibir, K. Nahar, A.

Bukhari, M. A. Dervash, and T. Kawano, “Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and

Cancer Signaling,” Biological Trace Element Research, vol. 200, no. 3, pp. 988–1001, Apr. 2021, doi: 10.1007/

s12011-021-02719-w.

C. G. Alimba, C. Faggio, S. Sivanesan, A. L. Ogunkanmi, and K. Krishnamurthi, “Micro(nano)-plastics in the

environment and risk of carcinogenesis: Insight into possible mechanisms,” Journal of Hazardous Materials,

vol. 416, p. 126143, Aug. 2021, doi: 10.1016/j.jhazmat.2021.126143.

A. T. Batista Guimarães, F. Neves Estrela, P. S. Pereira a, J. E. de Andrade Vieira, A. S. de Lima Rodrigues,

F. Guimarães Silva, and G. Malafaia, “Toxicity of polystyrene nanoplastics in Ctenopharyngodon idella juveniles: A genotoxic, mutagenic and cytotoxic perspective,” Science of The Total Environment, vol. 752, pp.

–141937, Jan. 2021, doi: 10.1016/j.scitotenv.2020.141937.

K. A. Delmond, T. Vicari, I. C. Guiloski, A. C. Dagostim, C. L. Voigt, H. C. Silva de Assis, W. A. Ramsdorf, and

M. M. Cestari, “Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO2) and inorganic lead (PbII),” Environmental Toxicology and Pharmacology, vol. 67, pp. 42–52,

Apr. 2019, doi: 10.1016/j.etap.2019.01.009.

K. Shahzad, M. N. Khan, F. Jabeen, A. S. Chaudhry, M. K. Ahmad Khan, C. Ara, and M. S. Khan, “Study of

Some Toxicological Aspects of Titanium Dioxide Nanoparticles Through Oxidative Stress, Genotoxicity, and

Histopathology in Tilapia, Oreochromis mossambicus,” BioNanoScience, vol. 12, pp. 1116–1124, Aug. 2022,

doi: 10.1007/s12668-022-01024-7.

K. Shahzad, M. Naeem Khan, F. Jabeen, N. Kosour, A. Shakoor Chaudhry, M. Sohail, and N. Ahmad, “Toxicity

of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative

stress, histopathology and genotoxicity,” International Journal of Environmental Science and Technology, vol.

, no. 4, pp. 1973–1984, May 2018, doi: 10.1007/s13762-018-1807-7.

R. Belal and A. Gad, “Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the

hemocytes of Bombyx mori larvae,” Scientific Reports, vol. 13, no. 1, p. 3520, Mar. 2023, doi: 10.1038/s41598-

-30444-y.

L. Neeratanaphan, C. Kamollerd, P. Suwannathada, P. Suwannathada, and B. Tengjaroenkul, “Genotoxicity

and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill

Reservoir,” International Journal of Environmental Research and Public Health, vol. 17, no. 6, p. 1980, Mar.

, doi: 10.3390/ijerph17061980.

S. Hemmaphan and N. K. Bordeerat, “Genotoxic Effects of Lead and Their Impact on the Expression of DNA

Repair Genes,” vol. 19, no. 7, pp. 4307–4307, Apr. 2022, doi: 10.3390/ijerph19074307.

K. Hercog, S. Maisanaba, M. Filipič, M. Sollner-Dolenc, L. Kač, and B. Žegura, “Genotoxic activity of bisphenol

A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular

carcinoma (HepG2) cells,” Science of The Total Environment, vol. 687, pp. 267–276, Oct. 2019, doi: 10.1016/j.

scitotenv.2019.05.486.

M. Sendra, M. Štampar, K. Fras, B. Novoa, A. Figueras, and B. Žegura, “Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model,” Environment International, vol. 171, p. 107721, Jan. 2023,

doi: 10.1016/j.envint.2022.107721.

H. J. Forman and H. Zhang, “Targeting oxidative stress in disease: promise and limitations of antioxidant therapy,” Nature Reviews Drug Discovery, vol. 20, no. 9, pp. 689–709, Jun. 2021, doi: 10.1038/s41573-021-00233-1.

John, M. K. Ankem, and Chendil Damodaran, “Oxidative Stress: a Promising Target for Chemoprevention,”

Current Pharmacology Reports, vol. 2, no. 2, pp. 73–81, Feb. 2016, doi: 10.1007/s40495-016-0052-3.

V. Montero, A. Hernández, and J. C. Sandoval “Culture and Molecular Identification, of Helicobacter pylori

in Drinking Water from Areas of High and Low Incidence of Gastric Cancer in Costa Rica,”, Open Journal of

Medical Microbiology, vol. 4, mo. 4, pp. 261-269, Dec. 2014, doi:/10.4236/ojmm.2014.44030.

V. Montero, J. Quesada, A. Ledezma, and J. Sandoval, “Determination of arsenic in drinking water for human

consumption in the province of Cartago,”, Acta Médica Costarricense, vol. 52, no. 2, pp. 96-101, 2010.

B. Valdés-Rodríguez, V. Montero-Campos, and M. G. Siebecker, “Causes of Chronic Kidney Disease of NonTraditional Origin in Central America: An Approach Based on Medical Geology,”, Geosciences, vol. 13, no.

, pp. 1-12, Nov. 2023, doi: 10.3390/ geosciences13120360.

V. Montero, Y. Chinchilla, L. Gómez, A. Flores, A. Medaglia, R. Guillen, and E. Montero, “Human health

risk assessment for consumption of microplastics and plasticizing substances through marine species,”,

Environmental Research, vol. 237, no. 1, pp. 1-10, Aug. 2023, doi: 10.1016/j.envres.2023.116843