Toxicología de micro y nanoplásticos: riesgo de tóxicos a dosis baja y cambios epigenéticos
Contenido principal del artículo
Resumen
Los riesgos toxicológicos asociados a los nano y microplásticos (NMP) están relacionados directamente con la ingestión por vía oral de estas partículas, generalmente por fragmentación de envases y su consiguiente presencia en productos alimenticios naturales, agua de consumo y otros artículos que son productos básicos en nuestra vida diaria. Las partículas cuyo destino es el océano, pueden en consecuencia, ser ingeridas por especies marinas poniendo en riesgo la seguridad alimentaria teniendo acceso a los niveles más altos de la cadena trófica. Los nanoplásticos (NP), se relacionan por su pequeño tamaño y facilidad de movimiento, a la producción de especies reactivas de oxígeno (ROS) dentro de la célula, lo que se asocia directamente a procesos posiblemente carcinogénicos. En respuesta a la exposición constante a microplásticos (MP) podemos encontrarlos asociados a la manufactura, la presencia de sustancias plastificantes y estabilizadores tales como Bisfenol A y Ptalatos, los cuales a dosis muy bajas están asociadas a disrupción endocrina, esto es, reemplazo de hormonas humanas en el cuerpo por parecido estructural, lo que lleva a alteraciones metabólicas con manifestaciones a lo largo de la vida inclusive de transmisión a la descendencia por efectos epigenéticos asociados. Uno de los problemas con estas sustancias es el efecto de dosis bajas pues tienen un comportamiento llamado de “curva de respuesta de dosis no monotónica” (CRDNM) para la cual se pueden observar efectos adversos en las dosis de referencia aceptadas internacionalmente o por debajo de esta.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
B. Worm, H. Lotze, and I. Jubinville. “Plastic as a Persistent Marine Pollutant”. Annual Review of Environment and Resources, vol. 42, no. 1, pp. 1–26, 2017.https://www.annualreviews.org/doi/10.1146/annurev-environ-102016-06070
Gopinath, V. Saranya, and S. Vijayakumar. “Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics”. Scientific Reports, vol. 9, no. 1, pp. 8860, 2019. https://www.nature.com/articles/s41598-019-45139-6
B. Jiang, A. Kauffman, and L. Li. “Health impacts of environmental contamination of micro- and nanoplastics”: a review. Environ Health Prev Med 25-29, 2020. https://doi.org/10.1186/s12199-020-00870-9
Vethaak, A. Dick, and Juliette Legler. "Microplastics and human health." Science 371.6530 : 672-674, 2021.
M. Kosuth, S. Mason, and E. Wattenberg. “Anthropogenic contamination of tap water, beer, and sea salt”. PLOS ONE, vol. 13, no. 4, 2018. https://doi.org/10.1371/journal.pone.0194970
X. Chang, Y. Xue, and L. Jiangyan. “Potential health impact of environmental micro‐and nanoplastics pollution. Journal of Applied Toxicology”, 40(1), 4-15, 2020. https://doi.org/10.1002/jat.3915
Yang Zhou, Jiandong Liu, Li Qian. Epigenomic Reprogramming in Cardiovascular Disease. Academic Press, vol 9, Pages 149-163, 2019. https://doi.org/10.1016/B978-0-12-814513-5.00010-6.
H. Imhof and C. Laforsch. “Hazardous or not – Are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles?”. Environmental Pollution, vol. 218, pp. 383–391, 2016. https://pubmed.ncbi.nlm.nih.gov/27431695/
S. O’Neill and J. Lawler. “Knowledge gaps on micro and nanoplastics and human health: A critical review”. Case Studies in Chemical and Environmental Engineering, vol. 3, pp. 100091, 2021. https://doi.org/10.1016/j.cscee.2021.100091
D. Ho, J. Leong, and R. Crew. “Maternal-placental-fetal biodistribution of multimodal polymeric nanoparticles in a pregnant rat model in mid and late gestation”. Scientific Reports, vol. 7, pp. 2866, 2017. https://doi.org/10.1038/s41598-017-03128-7
E. Besseling, P. Redondo, and E. “Quantifying ecological risks of aquatic micro- and nanoplastic”. Critical Reviews in Environmental Science and Technology, vol. 49(1), pp. 32-80, 2018.
A. Moosavi, and A. Ardekani. “Role of Epigenetics in Biology and Human Diseases”. Iranian biomedical journal, vol. 20, no. 5, pp. 246–258, 2016. https://doi.org/10.22045/ibj.2016.01
Lacal I and Ventura R (2018) Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front. Mol. Neurosci. 11:292. 2018. doi: 10.3389/fnmol.2018.00292
C. Yong, S. Valiyaveetill, and B. Tang. “Toxicity of Microplastics and Nanoplastics in Mammalian System”s. International journal of environmental research and public health, vol. 17, no. 5, pp. 1509, 2020. https://doi.org/10.3390/ijerph17051509
N. Brun, P. van Hage, and E. Hunting. “Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish”. Communications Biology, vol. 2, no. 1, 2019. https://doi.org/10.1038/s42003-019-0629-6
C. Moutinho and M. Esteller. “MicroRNAs and Epigenetics”. Advances in cancer research, vol. 135, pp. 189-220, 2017. https://doi.org/10.1016/bs.acr.2017.06.003
Y. Zhang, M. Wolosker, and Y. Zhao. “Exposure to microplastics causes gut damage, locomotor dysfunction, epigenetic silencing, and aggravates cadmium (Cd) toxicity in Drosophila”. Science of The Total Environment, vol. 744, pp. 140979, 2020. https://doi.org/10.1016/j.scitotenv.2020.140979
M. Auguste, T. Balbi, and C. Ciacci. “Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus.” Frontiers in immunology, vol. 11, no. 426, 2020. https://doi.org/10.3389/fimmu.2020.00426
S. Matthews, E. Xu, and E. Roubeau. “Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster”. Environmental Science: Nano, vol. 8, pp. 110-121, 2021. https://doi.org/10.1039/D0EN00942C
T. Luo, Y. Zhang, and C. Wang, X. “Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring”. Environmental pollution (Barking, Essex: 1987), vol. 255, no. 1, pp. 113122, 2019. https://doi.org/10.1016/j.envpol.2019.113122
V. Barbato, G. Talevi, and R. Gualtieri. “Polystyrene nanoparticles may affect cell mitosis and compromise early embryo development in mammals.” Theriogenology, vol. 145, pp. 18-23, 2020. https://doi.org/10.1016/j.theriogenology.2020.01.007
S Bojic, M Falco, P Stojkovic. “Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes”. Stem Cells. 38:1321-1325. 2020. DOI: 10.1002/stem.3244
M. Qu, Y. Zhao, and Q. Rui. “Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure”. Environmental Pollution, vol. 255, pp. 113-137, 2019.
S. Wilkinson. “Investigating the Epigenetic Effects of Microplastic Exposure in Bluegills (Lepomis Macrochirus) Using Methylation Sensitive-AFLPS”. The University of West Florida, 2020.
J. Prior. “Epigenetic effects of microplastics exposure on the common mysid shrimp Americamysis bahia [Master’s Degree Thesis]”. The University of West Florida, 2020.
Y. Qiu, Y. Liu, and Y. Li. “Intestinal mir-794 responds to nanopolystyrene by linking insulin and p38 MAPK signaling pathways in nematode Caenorhabditis elegans”. Ecotoxicology and Environmental Safety, vol. 201, pp. 110857, 2020. https://doi.org/10.1016/j.ecoenv.2020.110857
A. Pedersen, D. Meyer, and A. Petriv. “Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences”. Environmental Pollution, vol. 266, no. 2, pp. 115090, 2020. https://doi.org/10.1016/j.envpol.2020.115090.
Q. Chen, M. Gundlach, and S. Yang. “Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity”. Science of The Total Environment, pp. 584-594, 2017. https://doi.org/10.1016/j.scitotenv.2017.01.156
J. Pitt, R. Trevisan, and A. Massarsky.“Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene”. Science of The Total Environment, vol. 643, pp. 324–334, 2018. https://doi.org/10.1016/j.scitotenv.2018.06.186
J Hahladakis, C Velis, and R. Weber. “An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling”. J Hazard Mater, vol. 344, pp.179-199, 2018. doi: 10.1016/j.jhazmat.2017.10.014
S Almeida, A Raposo, M Almeida. “Bisphenol A: Food Exposure and Impact on Human Health”.
Comprehensive Reviews in Food Science and Food Safety., von 17, 6 pp.1503-1517, 2018.
https://doi.org/10.1111/1541-4337.12388
F Vilarinho, R Sendón, and A van der Kellen. “Bisphenol A in food as a result of its migration from food packaging”. Trends in Food Science & Technology, vol. 91, pp. 33-65, 2019. https://doi.org/10.1016/j.tifs.2019.06.012
T Qin, X Yang T, Guo, T Yang. “Epigenetic Alteration Shaped by the Environmental Chemical Bisphenol A”. Front. Genet. 11:618966. 2021. doi: 10.3389/fgene.2020.618966
L Vandenberg. “Low Dose Effects and Nonmonotonic Dose Responses for Endocrine Disruptors”. In book: Endocrine Disruption and Human Health (pp.141-163). 2022. DOI:10.1016/B978-0-12-821985-0.00006-2
Y. Horie, N . Kanazawa, and C. Takahashi. “Exposure to 4-nonylphenol induces a shift in the gene expression of gsdf and testis-ova formation and sex reversal in Japanese medaka (Oryzias latipes)”. J Appl Toxicol, vol. 41(3), pp. 399-409, 2021. DOI 10.1002/jat.4051
T Burton, A Fedele, J Xie, L Sanderman. “The gene for the lysosomal protein LAMP 3 is a direct target of the transcription factor ATF4”. Journal of Biological Chemistry. 2020. DOI: https://doi.org/10.1074/jbc.RA119.011864
T. Qin, X. Zhang, and T. Guo.” Epigenetic Alteration Shaped by the Environmental Chemical Bisphenol A”. Front. Genet. 11:618966, 2021. doi: 10.3389/fgene.2020.618966
M. Kumar, D. Sarma, and S. Shubham. “Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases”. Front Public Health 8:553850, 2020. doi: 10.3389/fpubh.2020.553850
E. Gruber, V. Stadlbauer, V. Pichler. “To Waste or Not to Waste: Questioning Potential Health Risks of Micro and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity”. Exposure and Health, 2022. https://doi.org/10.1007/s12403-022-00470-8