Toxicology of micro and nanoplastics: risk of toxic at low dose and epigenetic changes

Main Article Content

Virginia Montero-Campos
Lucía Noboa-Jiménez
Luis Gómez-Vargas

Abstract

The toxicological risks associated with nano and microplastics (NMP) are directly related to the oral ingestion intake of these particles, generally by fragmentation of packaging and their consequent presence in natural food products, drinking water and other articles that are basic products in our daily life. The particles whose destination is the ocean, can consequently be ingested by marine species, putting food security at risk, having access to the highest levels of the food chain. Nanoplastics (NP), due to their small size and ease of movement, are related to the production of reactive oxygen species (ROS) within the cell, which is directly associated with the possible carcinogenic processes. In response to constant exposure to microplastics (PM) we can find associated with manufacturing, the presence of plasticizing substances and stabilizers such as Bisphenol A and Pthalates, which at very low doses are associated with endocrine disruption, that is, hormone replacement in the body due to structural resemblance, which leads to metabolic alterations with manifestations throughout life, including transmission to offspring due to associated epigenetic effects. One of the problems with these substances is the effect of low doses, since they have a behavior called “non-monotonic dose response curve” (NMDRC) for which adverse effects can be observed at or below the internationally accepted reference doses.

Article Details

How to Cite
Montero-Campos, V., Noboa-Jiménez, L. ., & Gómez-Vargas, L. . (2023). Toxicology of micro and nanoplastics: risk of toxic at low dose and epigenetic changes. Tecnología En Marcha Journal, 36(4), Pág. 169–180. https://doi.org/10.18845/tm.v36i4.6417
Section
Artículo científico

References

B. Worm, H. Lotze, and I. Jubinville. “Plastic as a Persistent Marine Pollutant”. Annual Review of Environment and Resources, vol. 42, no. 1, pp. 1–26, 2017.https://www.annualreviews.org/doi/10.1146/annurev-environ-102016-06070

Gopinath, V. Saranya, and S. Vijayakumar. “Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics”. Scientific Reports, vol. 9, no. 1, pp. 8860, 2019. https://www.nature.com/articles/s41598-019-45139-6

B. Jiang, A. Kauffman, and L. Li. “Health impacts of environmental contamination of micro- and nanoplastics”: a review. Environ Health Prev Med 25-29, 2020. https://doi.org/10.1186/s12199-020-00870-9

Vethaak, A. Dick, and Juliette Legler. "Microplastics and human health." Science 371.6530 : 672-674, 2021.

M. Kosuth, S. Mason, and E. Wattenberg. “Anthropogenic contamination of tap water, beer, and sea salt”. PLOS ONE, vol. 13, no. 4, 2018. https://doi.org/10.1371/journal.pone.0194970

X. Chang, Y. Xue, and L. Jiangyan. “Potential health impact of environmental micro‐and nanoplastics pollution. Journal of Applied Toxicology”, 40(1), 4-15, 2020. https://doi.org/10.1002/jat.3915

Yang Zhou, Jiandong Liu, Li Qian. Epigenomic Reprogramming in Cardiovascular Disease. Academic Press, vol 9, Pages 149-163, 2019. https://doi.org/10.1016/B978-0-12-814513-5.00010-6.

H. Imhof and C. Laforsch. “Hazardous or not – Are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles?”. Environmental Pollution, vol. 218, pp. 383–391, 2016. https://pubmed.ncbi.nlm.nih.gov/27431695/

S. O’Neill and J. Lawler. “Knowledge gaps on micro and nanoplastics and human health: A critical review”. Case Studies in Chemical and Environmental Engineering, vol. 3, pp. 100091, 2021. https://doi.org/10.1016/j.cscee.2021.100091

D. Ho, J. Leong, and R. Crew. “Maternal-placental-fetal biodistribution of multimodal polymeric nanoparticles in a pregnant rat model in mid and late gestation”. Scientific Reports, vol. 7, pp. 2866, 2017. https://doi.org/10.1038/s41598-017-03128-7

E. Besseling, P. Redondo, and E. “Quantifying ecological risks of aquatic micro- and nanoplastic”. Critical Reviews in Environmental Science and Technology, vol. 49(1), pp. 32-80, 2018.

A. Moosavi, and A. Ardekani. “Role of Epigenetics in Biology and Human Diseases”. Iranian biomedical journal, vol. 20, no. 5, pp. 246–258, 2016. https://doi.org/10.22045/ibj.2016.01

Lacal I and Ventura R (2018) Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front. Mol. Neurosci. 11:292. 2018. doi: 10.3389/fnmol.2018.00292

C. Yong, S. Valiyaveetill, and B. Tang. “Toxicity of Microplastics and Nanoplastics in Mammalian System”s. International journal of environmental research and public health, vol. 17, no. 5, pp. 1509, 2020. https://doi.org/10.3390/ijerph17051509

N. Brun, P. van Hage, and E. Hunting. “Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish”. Communications Biology, vol. 2, no. 1, 2019. https://doi.org/10.1038/s42003-019-0629-6

C. Moutinho and M. Esteller. “MicroRNAs and Epigenetics”. Advances in cancer research, vol. 135, pp. 189-220, 2017. https://doi.org/10.1016/bs.acr.2017.06.003

Y. Zhang, M. Wolosker, and Y. Zhao. “Exposure to microplastics causes gut damage, locomotor dysfunction, epigenetic silencing, and aggravates cadmium (Cd) toxicity in Drosophila”. Science of The Total Environment, vol. 744, pp. 140979, 2020. https://doi.org/10.1016/j.scitotenv.2020.140979

M. Auguste, T. Balbi, and C. Ciacci. “Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus.” Frontiers in immunology, vol. 11, no. 426, 2020. https://doi.org/10.3389/fimmu.2020.00426

S. Matthews, E. Xu, and E. Roubeau. “Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster”. Environmental Science: Nano, vol. 8, pp. 110-121, 2021. https://doi.org/10.1039/D0EN00942C

T. Luo, Y. Zhang, and C. Wang, X. “Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring”. Environmental pollution (Barking, Essex: 1987), vol. 255, no. 1, pp. 113122, 2019. https://doi.org/10.1016/j.envpol.2019.113122

V. Barbato, G. Talevi, and R. Gualtieri. “Polystyrene nanoparticles may affect cell mitosis and compromise early embryo development in mammals.” Theriogenology, vol. 145, pp. 18-23, 2020. https://doi.org/10.1016/j.theriogenology.2020.01.007

S Bojic, M Falco, P Stojkovic. “Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes”. Stem Cells. 38:1321-1325. 2020. DOI: 10.1002/stem.3244

M. Qu, Y. Zhao, and Q. Rui. “Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure”. Environmental Pollution, vol. 255, pp. 113-137, 2019.

S. Wilkinson. “Investigating the Epigenetic Effects of Microplastic Exposure in Bluegills (Lepomis Macrochirus) Using Methylation Sensitive-AFLPS”. The University of West Florida, 2020.

J. Prior. “Epigenetic effects of microplastics exposure on the common mysid shrimp Americamysis bahia [Master’s Degree Thesis]”. The University of West Florida, 2020.

Y. Qiu, Y. Liu, and Y. Li. “Intestinal mir-794 responds to nanopolystyrene by linking insulin and p38 MAPK signaling pathways in nematode Caenorhabditis elegans”. Ecotoxicology and Environmental Safety, vol. 201, pp. 110857, 2020. https://doi.org/10.1016/j.ecoenv.2020.110857

A. Pedersen, D. Meyer, and A. Petriv. “Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences”. Environmental Pollution, vol. 266, no. 2, pp. 115090, 2020. https://doi.org/10.1016/j.envpol.2020.115090.

Q. Chen, M. Gundlach, and S. Yang. “Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity”. Science of The Total Environment, pp. 584-594, 2017. https://doi.org/10.1016/j.scitotenv.2017.01.156

J. Pitt, R. Trevisan, and A. Massarsky.“Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene”. Science of The Total Environment, vol. 643, pp. 324–334, 2018. https://doi.org/10.1016/j.scitotenv.2018.06.186

J Hahladakis, C Velis, and R. Weber. “An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling”. J Hazard Mater, vol. 344, pp.179-199, 2018. doi: 10.1016/j.jhazmat.2017.10.014

S Almeida, A Raposo, M Almeida. “Bisphenol A: Food Exposure and Impact on Human Health”.

Comprehensive Reviews in Food Science and Food Safety., von 17, 6 pp.1503-1517, 2018.

https://doi.org/10.1111/1541-4337.12388

F Vilarinho, R Sendón, and A van der Kellen. “Bisphenol A in food as a result of its migration from food packaging”. Trends in Food Science & Technology, vol. 91, pp. 33-65, 2019. https://doi.org/10.1016/j.tifs.2019.06.012

T Qin, X Yang T, Guo, T Yang. “Epigenetic Alteration Shaped by the Environmental Chemical Bisphenol A”. Front. Genet. 11:618966. 2021. doi: 10.3389/fgene.2020.618966

L Vandenberg. “Low Dose Effects and Nonmonotonic Dose Responses for Endocrine Disruptors”. In book: Endocrine Disruption and Human Health (pp.141-163). 2022. DOI:10.1016/B978-0-12-821985-0.00006-2

Y. Horie, N . Kanazawa, and C. Takahashi. “Exposure to 4-nonylphenol induces a shift in the gene expression of gsdf and testis-ova formation and sex reversal in Japanese medaka (Oryzias latipes)”. J Appl Toxicol, vol. 41(3), pp. 399-409, 2021. DOI 10.1002/jat.4051

T Burton, A Fedele, J Xie, L Sanderman. “The gene for the lysosomal protein LAMP 3 is a direct target of the transcription factor ATF4”. Journal of Biological Chemistry. 2020. DOI: https://doi.org/10.1074/jbc.RA119.011864

T. Qin, X. Zhang, and T. Guo.” Epigenetic Alteration Shaped by the Environmental Chemical Bisphenol A”. Front. Genet. 11:618966, 2021. doi: 10.3389/fgene.2020.618966

M. Kumar, D. Sarma, and S. Shubham. “Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases”. Front Public Health 8:553850, 2020. doi: 10.3389/fpubh.2020.553850

E. Gruber, V. Stadlbauer, V. Pichler. “To Waste or Not to Waste: Questioning Potential Health Risks of Micro and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity”. Exposure and Health, 2022. https://doi.org/10.1007/s12403-022-00470-8

Most read articles by the same author(s)