Diálogo entre hongos y plantas en la raíz y el suelo

Contenido principal del artículo

William Rivera-Méndez
William Watson-Guido

Resumen

Los hongos son organismos presentes en todos los ecosistemas terrestres y cumplen diversos
papeles ecológicos en los nichos que habitan. El suelo es una matriz de intenso intercambio
de señales, que los hongos ha aprovechado para establecer todo tipo de interacciones. Sus
relaciones particulares con las raíces de las plantas están determinadas por procesos de
comunicación que se establecen entre ambos organismos a nivel celular y tisular. Si bien el
concepto de inteligencia en organismos que no sean animales es todavía un tema controversial,
existen evidencias científicas que apuntan al menos a un nivel basal de inteligencia para guiar
estos procesos de comunicación y respuesta. En este contexto se describen los conocimientos
más recientes sobre los hongos rizosféricos, micorrícicos y endófitos; donde se destacan sus
efectos en la regulación del crecimiento de las plantas, la nutrición y el intercambio de carbono
y agua, la inducción o la supresión de la resistencia sistémica, la colonización celular y la
producción de metabolitos secundarios, ya sea en relaciones simbióticas o patogénicas. Pese
a los nuevos avances, existen grandes oportunidades de investigación básica y aplicada para
el aprovechamiento de este diálogo molecular. El objetivo de esta revisión fue presentar algunos
de los fenómenos descritos en la interacción hongo-planta en el suelo y mostrar su relevancia
desde la perspectiva de una “comunicación inteligente”.

Detalles del artículo

Cómo citar
Rivera-Méndez, W., & Watson-Guido, W. (2024). Diálogo entre hongos y plantas en la raíz y el suelo. Revista Tecnología En Marcha, 37(9), Pág. 103–114. https://doi.org/10.18845/tm.v37i9.7616
Sección
Artículo científico

Citas

K. Adhikari y A. E. Hartemink, «Linking soils to ecosystem services — A global review», Geoderma, vol. 262,

pp. 101-111, ene. 2016, doi: 10.1016/j.geoderma.2015.08.009.

L. Philippot, C. Chenu, A. Kappler, M. C. Rillig, y N. Fierer, «The interplay between microbial communities and

soil properties», Nat. Rev. Microbiol., vol. 22, n.o

, pp. 226-239, abr. 2024, doi: 10.1038/s41579-023-00980-5.

P. Hinsinger, A. G. Bengough, D. Vetterlein, y I. M. Young, «Rhizosphere: biophysics, biogeochemistry and

ecological relevance», Plant Soil, vol. 321, n.o

, pp. 117-152, ago. 2009, doi: 10.1007/s11104-008-9885-9.

R. L. Berendsen, C. M. J. Pieterse, y P. A. H. M. Bakker, «The rhizosphere microbiome and plant health»,

Trends Plant Sci., vol. 17, n.o

, pp. 478-486, ago. 2012, doi: 10.1016/j.tplants.2012.04.001.

D. L. Jones y P. Hinsinger, «The rhizosphere: complex by design», Plant Soil, vol. 312, n.o

, pp. 1-6, nov. 2008,

doi: 10.1007/s11104-008-9774-2.

R. J. Rodriguez, J. F. White Jr, A. E. Arnold, y R. S. Redman, «Fungal endophytes: diversity and functional

roles», New Phytol., vol. 182, n.o

, pp. 314-330, 2009, doi: 10.1111/j.1469-8137.2009.02773.x.

R. Grabka et al., «Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and

Pathogens», Plants, vol. 11, n.o

, Art. n.o

, ene. 2022, doi: 10.3390/plants11030384.

M. Saleem, M. Arshad, S. Hussain, y A. S. Bhatti, «Perspective of plant growth promoting rhizobacteria (PGPR)

containing ACC deaminase in stress agriculture», J. Ind. Microbiol. Biotechnol., vol. 34, n.o

, pp. 635-648,

oct. 2007, doi: 10.1007/s10295-007-0240-6.

M. Shoresh, G. E. Harman, y F. Mastouri, «Induced Systemic Resistance and Plant Responses to Fungal

Biocontrol Agents», Annu. Rev. Phytopathol., vol. 48, n.o

Volume 48, 2010, pp. 21-43, sep. 2010, doi: 10.1146/

annurev-phyto-073009-114450.

E. Martinez-Klimova, K. Rodríguez-Peña, y S. Sánchez, «Endophytes as sources of antibiotics», Biochem.

Pharmacol., vol. 134, pp. 1-17, jun. 2017, doi: 10.1016/j.bcp.2016.10.010.

F. Wang, L. Zhang, J. Zhou, Z. Rengel, T. S. George, y G. Feng, «Exploring the secrets of hyphosphere of

arbuscular mycorrhizal fungi: processes and ecological functions», Plant Soil, vol. 481, n.o

, pp. 1-22, dic.

, doi: 10.1007/s11104-022-05621-z.

M. Faghihinia, J. Jansa, L. J. Halverson, y P. L. Staddon, «Hyphosphere microbiome of arbuscular mycorrhizal

fungi: a realm of unknowns», Biol. Fertil. Soils, vol. 59, n.o

, pp. 17-34, ene. 2023, doi: 10.1007/s00374-022-

-4.

L. Wang, T. S. George, y G. Feng, «Concepts and consequences of the hyphosphere core microbiome for

arbuscular mycorrhizal fungal fitness and function», New Phytol., vol. n/a, n.o

n/a, doi: 10.1111/nph.19396.

A. L. Castro-Delgado et al., «Wood Wide Web: communication through the mycorrhizal network», Rev. Tecnol.

En Marcha, vol. 33, n.o

, pp. 114-125, dic. 2020, doi: 10.18845/tm.v33i4.4601.

E. Barrios, «Soil biota, ecosystem services and land productivity», Ecol. Econ., vol. 64, n.o

, pp. 269-285, dic.

, doi: 10.1016/j.ecolecon.2007.03.004.

M. Delgado-Baquerizo, J. Grinyer, P. B. Reich, y B. K. Singh, «Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment», Funct. Ecol., vol. 30, n.o

,

pp. 1862-1873, 2016, doi: 10.1111/1365-2435.12674.

L. C. Dincă, P. Grenni, C. Onet, y A. Onet, «Fertilization and Soil Microbial Community: A Review», Appl. Sci.,

vol. 12, n.o

, Art. n.o

, ene. 2022, doi: 10.3390/app12031198.

S. Sharma et al., «Multitrophic Reciprocity of AMF with Plants and Other Soil Microbes in Relation to Biotic

Stress», en Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate, P. Mathur, R.

Kapoor, y S. Roy, Eds., Singapore: Springer Nature, 2023, pp. 329-366. doi: 10.1007/978-981-99-0030-5_13.

F. A. Dijkstra, B. Zhu, y W. Cheng, «Root effects on soil organic carbon: a double-edged sword», New Phytol.,

vol. 230, n.o

, pp. 60-65, 2021, doi: 10.1111/nph.17082.

D. Wipf, F. Krajinski, D. van Tuinen, G. Recorbet, y P.-E. Courty, «Trading on the arbuscular mycorrhiza market:

from arbuscules to common mycorrhizal networks», New Phytol., vol. 223, n.o

, pp. 1127-1142, 2019, doi:

1111/nph.15775.

E. Blagodatskaya y Y. Kuzyakov, «Active microorganisms in soil: Critical review of estimation criteria and

approaches», Soil Biol. Biochem., vol. 67, pp. 192-211, dic. 2013, doi: 10.1016/j.soilbio.2013.08.024.

J. Hao et al., «The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa

(United States)», Appl. Environ. Microbiol., vol. 87, n.o

, pp. e02673-20, ene. 2021, doi: 10.1128/AEM.02673-

M.-C. Leewis et al., «The influence of soil development on the depth distribution and structure of soil microbial

communities», Soil Biol. Biochem., vol. 174, p. 108808, nov. 2022, doi: 10.1016/j.soilbio.2022.108808.

E. Rolli, L. Vergani, E. Ghitti, G. Patania, F. Mapelli, y S. Borin, «‘Cry-for-help’ in contaminated soil: a dialogue

among plants and soil microbiome to survive in hostile conditions», Environ. Microbiol., vol. 23, n.o

, pp.

-5703, 2021, doi: 10.1111/1462-2920.15647.

P. Nannipieri, «Soil Is Still an Unknown Biological System», Appl. Sci., vol. 10, n.o

, Art. n.o

, ene. 2020,

doi: 10.3390/app10113717.

A. Trewavas, «The foundations of plant intelligence», Interface Focus, vol. 7, n.o

, p. 20160098, abr. 2017, doi:

1098/rsfs.2016.0098.

S. Mancuso, The Revolutionary Genius of Plants: A New Understanding of Plant Intelligence and Behavior.

Simon and Schuster, 2018.

F. Cvrčková, H. Lipavská, y V. Žárský, «Plant intelligence: Why, why not or where?», Plant Signal. Behav., vol.

, n.o

, pp. 394-399, may 2009, doi: 10.4161/psb.4.5.8276.

N. P. Money, «Hyphal and mycelial consciousness: the concept of the fungal mind», Fungal Biol., vol. 125, n.o

, pp. 257-259, abr. 2021, doi: 10.1016/j.funbio.2021.02.001.

P. Lyon, «The cognitive cell: bacterial behavior reconsidered», Front. Microbiol., vol. 6, abr. 2015, doi: 10.3389/

fmicb.2015.00264.

A. Trewavas, Plant Behaviour and Intelligence. OUP Oxford, 2014.

J. Gao, B. Barzel, y A.-L. Barabási, «Universal resilience patterns in complex networks», Nature, vol. 530, n.o

, pp. 307-312, feb. 2016, doi: 10.1038/nature16948.

A. Adamatzky, J. Vallverdu, A. Gandia, A. Chiolerio, O. Castro, y G. Dodig-Crnkovic, «Fungal States of Minds».

bioRxiv, p. 2022.04.03.486900, 3 de abril de 2022. doi: 10.1101/2022.04.03.486900.

A. Adamatzky, J. Vallverdu, A. Gandia, A. Chiolerio, O. Castro, y G. Dodig-Crnkovic, «Fungal Minds», en

Fungal Machines: Sensing and Computing with Fungi, A. Adamatzky, Ed., Cham: Springer Nature Switzerland,

, pp. 409-422. doi: 10.1007/978-3-031-38336-6_26.

M. D. Fricker, L. L. M. Heaton, N. S. Jones, y L. Boddy, «The Mycelium as a Network», en The Fungal Kingdom,

John Wiley & Sons, Ltd, 2017, pp. 335-367. doi: 10.1128/9781555819583.ch15.

J. Vallverdú et al., «Slime mould: The fundamental mechanisms of biological cognition», Biosystems, vol. 165,

pp. 57-70, mar. 2018, doi: 10.1016/j.biosystems.2017.12.011.

Y. Fukasawa, M. Savoury, y L. Boddy, «Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources», ISME J., vol. 14, n.o

, pp. 380-388, feb. 2020,

doi: 10.1038/s41396-019-0536-3.

G. Boyno y S. Demir, «Plant-mycorrhiza communication and mycorrhizae in inter-plant communication»,

Symbiosis, vol. 86, n.o

, pp. 155-168, mar. 2022, doi: 10.1007/s13199-022-00837-0.

M. Saritha, P. Kumar, N. R. Panwar, y U. Burman, «Intelligent plant–microbe interactions», Arch. Agron. Soil

Sci., vol. 68, n.o

, pp. 1002-1018, jun. 2022, doi: 10.1080/03650340.2020.1870677.

J. Ge, D. Li, J. Ding, X. Xiao, y Y. Liang, «Microbial coexistence in the rhizosphere and the promotion of plant

stress resistance: A review», Environ. Res., vol. 222, p. 115298, abr. 2023, doi: 10.1016/j.envres.2023.115298.

C. Pellegrin, F. Martin, y C. Veneault-Fourrey, «Molecular Signalling During the Ectomycorrhizal Symbiosis», en

Biology of the Fungal Cell, D. Hoffmeister y M. Gressler, Eds., Cham: Springer International Publishing, 2019,

pp. 95-109. doi: 10.1007/978-3-030-05448-9_6.

S. W. Simard, «Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory», en Memory and

Learning in Plants, F. Baluska, M. Gagliano, y G. Witzany, Eds., Cham: Springer International Publishing, 2018,

pp. 191-213. doi: 10.1007/978-3-319-75596-0_10.

A. Sportes et al., «A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas

and their emerging challenges», Mycorrhiza, vol. 31, n.o

, pp. 637-653, nov. 2021, doi: 10.1007/s00572-021-

-2.

G. Boyno y S. Demir, «Plant-mycorrhiza communication and mycorrhizae in inter-plant communication»,

Symbiosis, vol. 86, n.o

, pp. 155-168, mar. 2022, doi: 10.1007/s13199-022-00837-0.

A. F. Figueiredo, J. Boy, y G. Guggenberger, «Common Mycorrhizae Network: A Review of the Theories and

Mechanisms Behind Underground Interactions», Front. Fungal Biol., vol. 2, 2021, Accedido: 11 de mayo de

[En línea]. Disponible en: https://www.frontiersin.org/article/10.3389/ffunb.2021.735299.

T. Ho-Plágaro y J. M. García, «Molecular Regulation of Arbuscular Mycorrhizal Symbiosis», Int. J. Mol. Sci., vol.

, n.o

, Art. n.o

, ene. 2022, doi: 10.3390/ijms23115960.

J. Choi et al., «The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in

rice», Nat. Commun., vol. 11, n.o

, Art. n.o

, abr. 2020, doi: 10.1038/s41467-020-16021-1.

C. Ding et al., «Cadmium transfer between maize and soybean plants via common mycorrhizal networks»,

Ecotoxicol. Environ. Saf., vol. 232, n.o

, pp. 1-8, mar. 2022, doi: 10.1016/j.ecoenv.2022.113273.

N. Boutafa, «Interplant communication: The role of mycorrhizal networks concerning underground interactions», Degree Thesis, Ecole Polytechnique de l’Université de Tours, Francia, 2019. Accedido: 9 de mayo de

[En línea]. Disponible en: http://memoires.scd.univ-tours.fr/EPU_DA/LOCAL/2019PFE_Nina_Boutafa.pdf

L. O. Marmolejo, M. N. Thompson, y A. M. Helms, «Defense Suppression through Interplant Communication

Depends on the Attacking Herbivore Species», J. Chem. Ecol., vol. 47, n.o

, pp. 1049-1061, 2021, doi:

1007/s10886-021-01314-6.

G. Santoyo, E. Gamalero, y B. R. Glick, «Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress»,

Front. Sustain. Food Syst., vol. 5, pp. 1-18, 2021.

J. Shi, X. Wang, y E. Wang, «Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From

Genes to Ecosystems», Annu. Rev. Plant Biol., vol. 74, n.o

, pp. 569-613, 2023, doi: 10.1146/annurevarplant-061722-090342.

L. Hao et al., «Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize

tolerance to La», Ecotoxicol. Environ. Saf., vol. 212, pp. 1-9, abr. 2021, doi: 10.1016/j.ecoenv.2021.111996.

R. Kalamulla et al., «Arbuscular Mycorrhizal Fungi in Sustainable Agriculture», Sustainability, vol. 14, n.o

,

Art. n.o

, ene. 2022, doi: 10.3390/su141912250.

J. Kaur, J. Chavana, P. Soti, A. Racelis, y R. Kariyat, «Arbuscular mycorrhizal fungi (AMF) influences growth

and insect community dynamics in Sorghum-sudangrass (Sorghum x drummondii)», Arthropod-Plant Interact.,

vol. 14, n.o

, pp. 301-315, jun. 2020, doi: 10.1007/s11829-020-09747-8.

O. A. Lastovetsky et al., «Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism

versus a Mutualism», mBio, vol. 11, n.o

, pp. 1-19, sep. 2020, doi: 10.1128/mBio.02088-20.

E. Kombrink y E. Schmelzer, «The Hypersensitive Response and its Role in Local and Systemic Disease

Resistance», Eur. J. Plant Pathol., vol. 107, n.o

, pp. 69-78, ene. 2001, doi: 10.1023/A:1008736629717.

J. E. Vanderplank, Disease Resistance in Plants. Elsevier, 2012.

C. M. J. Pieterse, C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. M. V. Wees, y P. A. H. M. Bakker, «Induced

Systemic Resistance by Beneficial Microbes», Annu. Rev. Phytopathol., vol. 52, n.o

Volume 52, 2014, pp. 347-

, ago. 2014, doi: 10.1146/annurev-phyto-082712-102340.

Z. M. Patel, R. Mahapatra, y S. S. M. Jampala, «Chapter 11 - Role of fungal elicitors in plant defense mechanism», en Molecular Aspects of Plant Beneficial Microbes in Agriculture, V. Sharma, R. Salwan, y L. K. T. Al-Ani,

Eds., Academic Press, 2020, pp. 143-158. doi: 10.1016/B978-0-12-818469-1.00012-2.

R. Maor y K. Shirasu, «The arms race continues: battle strategies between plants and fungal pathogens», Curr.

Opin. Microbiol., vol. 8, n.o

, pp. 399-404, ago. 2005, doi: 10.1016/j.mib.2005.06.008.

Z. Q. Fu y X. Dong, «Systemic Acquired Resistance: Turning Local Infection into Global Defense», Annu. Rev.

Plant Biol., vol. 64, n.o

Volume 64, 2013, pp. 839-863, abr. 2013, doi: 10.1146/annurev-arplant-042811-105606.

D. C. Fontana et al., «Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and

Abiotic Stresses», Pathogens, vol. 10, n.o

, Art. n.o

, may 2021, doi: 10.3390/pathogens10050570.

Y. Yu, Y. Gui, Z. Li, C. Jiang, J. Guo, y D. Niu, «Induced Systemic Resistance for Improving Plant Immunity by

Beneficial Microbes», Plants, vol. 11, n.o

, Art. n.o

, ene. 2022, doi: 10.3390/plants11030386.

I. A. Vos, L. Moritz, C. M. J. Pieterse, y S. C. M. Van Wees, «Impact of hormonal crosstalk on plant resistance

and fitness under multi-attacker conditions», Front. Plant Sci., vol. 6, ago. 2015, doi: 10.3389/fpls.2015.00639.

R. Hermosa, M. B. Rubio, R. E. Cardoza, C. Nicolás, E. Monte, y S. Gutiérrez, «The contribution of Trichoderma

to balancing the costs of plant growth and defense», Int. Microbiol. Off. J. Span. Soc. Microbiol., vol. 16, n.o

,

pp. 69-80, jun. 2013, doi: 10.2436/20.1501.01.181.

N. Aerts, M. Pereira Mendes, y S. C. M. Van Wees, «Multiple levels of crosstalk in hormone networks regulating

plant defense», Plant J., vol. 105, n.o

, pp. 489-504, 2021, doi: 10.1111/tpj.15124.

V. Ninkovic, D. Markovic, y M. Rensing, «Plant volatiles as cues and signals in plant communication», Plant

Cell Environ., vol. 44, n.o

, pp. 1030-1043, 2021, doi: 10.1111/pce.13910.

E. E. Quiñones-Aguilar, G. Rincón-Enríquez, L. López-Pérez, E. E. Quiñones-Aguilar, G. Rincón-Enríquez, y L.

López-Pérez, «Hongos micorrízicos nativos como promotores de crecimiento en plantas de guayaba (Psidium

guajava L.)», Terra Latinoam., vol. 38, n.o

, pp. 541-554, sep. 2020, doi: 10.28940/terra.v38i3.646.

C. J. U. Farro, M. A. G. Guerrero, C. R. C. Farfán, C. W. A. Sánchez, y G. E. Z. Valdera, «Hongos rizosféricos

de Echinopsis pachanoi “San Pedro hembra” y su potencial como promotores de crecimiento en Zea mays L.

bajo estrés salino», UCV Hacer, vol. 10, n.o

, Art. n.o

, jun. 2021, doi: 10.18050/RevUCVHACER.v10n2a2.

A. E. Fadiji y O. O. Babalola, «Exploring the potentialities of beneficial endophytes for improved plant growth»,

Saudi J. Biol. Sci., vol. 27, n.o

, pp. 3622-3633, dic. 2020, doi: 10.1016/j.sjbs.2020.08.002.

A. A. Adedayo y O. O. Babalola, «Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth»,

J. Fungi, vol. 9, n.o

, p. 239, feb. 2023, doi: 10.3390/jof9020239.

S. Gupta, P. Chaturvedi, y M. Kulkarni, «A critical review on exploiting the pharmaceutical potential of plant

endophytic fungi», Biotechnol. Adv., vol. 39, p. 107462, mar. 2020, doi: 10.1016/j.biotechadv.2019.107462.

J. Poveda, D. Eugui, P. Abril-Urías, y P. Velasco, «Endophytic fungi as direct plant growth promoters for

sustainable agricultural production», Symbiosis, vol. 85, n.o

, pp. 1-19, sep. 2021, doi: 10.1007/s13199-021-

-x.

X. Han y R. Kahmann, «Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens»,

Front. Plant Sci., vol. 10, jun. 2019, doi: 10.3389/fpls.2019.00822.

E. Chanclud y J.-B. Morel, «Plant hormones: a fungal point of view», Mol. Plant Pathol., vol. 17, n.o

, pp. 1289-

, 2016, doi: 10.1111/mpp.12393.

M. A. López, G. Bannenberg, y C. Castresana, «Controlling hormone signaling is a plant and pathogen challenge for growth and survival», Curr. Opin. Plant Biol., vol. 11, n.o

, pp. 420-427, ago. 2008, doi: 10.1016/j.

pbi.2008.05.002.

R. N. Patkar y N. I. Naqvi, «Fungal manipulation of hormone-regulated plant defense», PLOS Pathog., vol. 13,

n.o

, p. e1006334, jun. 2017, doi: 10.1371/journal.ppat.1006334.

L. A.-M. And y W. Rivera-Méndez, «Molecular Identification of Trichoderma spp. in Garlic and Onion Fields and

In Vitro Antagonism Trials on Sclerotium cepivorum», Rev. Bras. Ciênc. Solo, vol. 40, p. e0150454, abr. 2016,

doi: 10.1590/18069657rbcs20150454.

Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum

in onion plants under tropical climate conditions», Biological Control, vol. 141, p. 104145, feb. 2020, doi:

1016/j.biocontrol.2019.104145.

Artículos más leídos del mismo autor/a

1 2 > >>