Crecimiento de estructuras de carbono mediante deposición química en fase de vapor a baja presión
Contenido principal del artículo
Resumen
Los alótropos de carbono han ganado interés en las últimas décadas debido a sus propiedades y a la gran variedad de posibles aplicaciones tecnológicas que han demostrado. Por dichas razones, la obtención de estos alótropos con diferentes propiedades y coberturas es ampliamente investigado. La Deposición Química en Fase de Vapor (CVD, por sus siglas en inglés) es una de las técnicas más utilizadas para obtener este tipo de materiales con una alta calidad y cobertura en una forma controlada. En CVD, se utilizan metales de transición como catalizadores, fuentes de carbono gaseosas y altas temperaturas. En este reporte, se presentan estructuras de carbono sintetizadas sobre substratos de cobre utilizando Deposición Química en Fase de Vapor a Baja Presión (LPCVD, por sus siglas en inglés) con acetileno como fuente de carbono. Los sustratos de cobre se trataron térmicamente bajo una atmósfera reductora de hidrógeno-argón y luego se expusieron a acetileno, variando el flujo de acetileno y el tiempo de deposición. Los materiales resultantes se caracterizaron mediante Microscopía Óptica y Espectroscopia Raman. El enfoque seguido permitió determinar las mejores condiciones de síntesis de grafeno monocapa, de crecimiento irregular.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
V. K. Jain, S. Rattan, and A. Verma, “Recent trends in materials and devices,” Springer Proc. Phys., vol. 178, 2015, doi: 10.1007/978-3-319-29096-6.
H. O. Pierson, Handbook of Chemical Vapor Deposition (CVD), 2nd ed. William Andrew Inc., 1999.
J.-H. Park and T. S. Sudarshan, Eds., Chemical Vapor Deposition, vol. 2. ASM International, 2001.
J. M. Albella Martín, Ed., Láminas Delgadas y Recubrimientos: Preparación, Propiedades y Aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.
P. M. Martin, Ed., Handbook of Deposition Technologies for Films and Coatings, 3rd ed. Elsevier, 2010.
E. Dervishi et al., “The role of hydrocarbon concentration on the synthesis of large area few to multi-layer graphene structures,” Chem. Phys. Lett., vol. 501, no. 4–6, pp. 390–395, 2011, doi: 10.1016/j.cplett.2010.11.022.
S. Adcock, “Use of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition for Graphene Fabrication,” University of Arkansas, 2012.
Y. S. Kim et al., “Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition,” Nanoscale, vol. 5, no. 3, pp. 1221–1226, 2013, doi: 10.1039/ c2nr33034b.
A. Kumar, S. Khan, M. Zulfequar, Harsh, and M. Husain, “Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD,” Appl. Surf. Sci., vol. 402, pp. 161–167, 2017, doi: 10.1016/j.apsusc.2017.01.044.
C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, “Ultrafast Photoluminescence from Graphene,” Phys. Rev. Lett., vol. 105, no. 12, p. 127404, Sep. 2010.
Y. Zhu et al., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater., vol. 22, no. 35, pp. 3906–3924, 2010, doi: 10.1002/adma.201001068.
P. Blake et al., “Making graphene visible,” Appl. Phys. Lett., vol. 91, no. 6, p. 63124, Aug. 2007, doi: 10.1063/1.2768624.
C. Casiraghi et al., “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett., vol. 7, no. 9, pp. 2711–2717, Sep. 2007, doi: 10.1021/nl071168m.
K. I. Bolotin et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9–10, pp. 351–355, 2008, doi: http://dx.doi.org/10.1016/j.ssc.2008.02.024.
R. Urcuyo, D. González-Flores, and K. Cordero-Solano, “Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento,” Rev. Colomb. Química, vol. 50, no. 1, pp. 51–85, 2021, doi: 10.15446/ rev.colomb.quim.v50n1.90134.
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat Mater, vol. 6, no. 3, pp. 183–191, Mar. 2007.
V. B. Mohan, K. tak Lau, D. Hui, and D. Bhattacharyya, “Graphene-based materials and their composites: A review on production, applications and product limitations,” Compos. Part B Eng., vol. 142, pp. 200–220, 2018, doi: 10.1016/j.compositesb.2018.01.013.
A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, no. 1–2, pp. 47–57, 2007, doi: 10.1016/j. ssc.2007.03.052.
S. J. Chae et al., “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation,” Adv. Mater., vol. 21, no. 22, pp. 2328–2333, 2009, doi: 10.1002/ adma.200803016.
C. S. Lee et al., “Synthesis of conducting transparent few-layer graphene directly on glass at 450°C,” Nanotechnology, vol. 23, no. 26, p. 265603, 2012, doi: 10.1088/0957-4484/23/26/265603.
Y. Zhang, L. Zhang, and C. Zhou, “Review of chemical vapor deposition of graphene and related applications,” Acc. Chem. Res., vol. 46, no. 10, pp. 2329–2339, 2013, doi: 10.1021/ar300203n.
C. S. Chen and C. K. Hsieh, “Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition,” Thin Solid Films, vol. 584, pp. 265–269, 2015, doi: 10.1016/j. tsf.2014.12.012.
M. Hajian, M. Zareie, D. Hashemian, and M. Bahrami, “Room-temperature synthesis of graphene-like carbon sheets from C2H2, CO2 and CO on copper foil,” RSC Adv., vol. 6, no. 77, pp. 73331–73335, 2016, doi: 10.1039/c6ra18173b.
M. Yang, S. Sasaki, K. Suzuki, and H. Miura, “Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene,” Appl. Surf. Sci., vol. 366, pp. 219–226, 2016, doi: 10.1016/j.apsusc.2016.01.089.
J. Plutnar, M. Pumera, and Z. Sofer, “The chemistry of CVD graphene,” J. Mater. Chem. C, vol. 6, no. 23, pp. 6082–6101, 2018, doi: 10.1039/c8tc00463c.
C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” J. Mater. Chem., vol. 21, no. 10, pp. 3324–3334, 2011, doi: 10.1039/c0jm02126a.
R. Muñoz and C. Gómez-Aleixandre, “Review of CVD Synthesis of Graphene,” Chem. Vap. Depos., vol. 19, no. 10-11–12, pp. 297–322, 2013, doi: 10.1002/cvde.201300051.
B. Deng, Z. Liu, and H. Peng, “Toward Mass Production of CVD Graphene Films,” Adv. Mater., vol. 31, no. 9, p. 1800996, 2019, doi: 10.1002/adma.201800996.
M. Li, D. Liu, D. Wei, X. Song, D. Wei, and A. T. S. Wee, “Controllable Synthesis of Graphene by PlasmaEnhanced Chemical Vapor Deposition and Its Related Applications,” Adv. Sci., vol. 3, no. 11, p. 1600003, 2016, doi: 10.1002/advs.201600003.
T. O. Terasawa and K. Saiki, “Growth of graphene on Cu by plasma enhanced chemical vapor deposition,” Carbon N. Y., vol. 50, no. 3, pp. 869–874, 2012, doi: 10.1016/j.carbon.2011.09.047.
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale, vol. 5, no. 12, pp. 5180–5204, 2013, doi: 10.1039/ c3nr33449j.
S. H. Chan, S. H. Chen, W. T. Lin, M. C. Li, Y. C. Lin, and C. C. Kuo, “Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–5, 2013, doi: 10.1186/1556-276X-8-285.
K. J. Peng et al., “Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature,” J. Mater. Chem. C, vol. 1, no. 24, pp. 3862–3870, 2013, doi: 10.1039/ c3tc30332b.
D. A. Boyd et al., “Single-step deposition of high-mobility graphene at reduced temperatures,” Nat. Commun., vol. 6, no. 1, pp. 1–8, 2015, doi: 10.1038/ncomms7620.
F. H. O. Carvalho, A. R. Vaz, S. Moshkalev, and R. V. Gelamo, “Syntesis of carbon nanostructures near room temperature using microwave PECVD,” Mater. Res., vol. 18, no. 4, pp. 860–866, 2015, doi: 10.1590/15161439.005315.
I. Levchenko, K. K. Ostrikov, J. Zheng, X. Li, M. Keidar, and K. B. K. Teo, “Scalable graphene production: Perspectives and challenges of plasma applications,” Nanoscale, vol. 8, no. 20, pp. 10511–10527, 2016, doi: 10.1039/c5nr06537b.
V. P. Pham, H. S. Jang, D. Whang, and J. Y. Choi, “Direct growth of graphene on rigid and flexible substrates: Progress, applications, and challenges,” Chem. Soc. Rev., vol. 46, no. 20, pp. 6276–6300, 2017, doi: 10.1039/ c7cs00224f.
Z. Ullah et al., “A comparative study of graphene growth by APCVD, LPCVD and PECVD,” Mater. Res. Express, vol. 5, no. 3, p. 035606, 2018, doi: 10.1088/2053-1591/aab7b4.
A. C. Ferrari et al., “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, Oct. 2006.
M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., vol. 10, no. 3, pp. 751–758, 2010, doi: 10.1021/nl904286r.
R. M. Jacobberger, R. Machhi, J. Wroblewski, B. Taylor, A. L. Gillian-Daniel, and M. S. Arnold, “Simple Graphene Synthesis via Chemical Vapor Deposition,” J. Chem. Educ., vol. 92, no. 11, pp. 1903–1907, 2015, doi: 10.1021/acs.jchemed.5b00126.
X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M. S. Dresselhaus, “Graphene edges: A review of their fabrication and characterization,” Nanoscale, vol. 3, no. 1, pp. 86–95, 2011, doi: 10.1039/c0nr00600a.
W. W. Liu, S. P. Chai, A. R. Mohamed, and U. Hashim, “Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 1171–1185, 2014, doi: 10.1016/j.jiec.2013.08.028.
H. C. Lee et al., “Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene,” RSC Adv., vol. 7, no. 26, pp. 15644–15693, 2017, doi: 10.1039/C7RA00392G.
S. M. Varela Fonseca, “Caracterización de estructuras de carbono obtenidas por Deposición Química en Fase de Vapor mediante Espectroscopia Raman,” Instituto Tecnológico de Costa Rica, 2017.
J. Kunc and M. Rejhon, “Raman 2D Peak Line Shape in Epigraphene on SiC,” Applied Sciences , vol. 10, no. 7. 2020, doi: 10.3390/app10072354.
I. Vlassiouk et al., “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” ACS Nano, vol. 5, no. 7, pp. 6069–6076, 2011, doi: 10.1021/nn201978y.
J. W. Suk et al., “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano, vol. 5, no. 9, pp. 6916–6924, 2011, doi: 10.1021/nn201207c.
L. Ma, W. Ren, and H. Cheng, “Transfer Methods of Graphene from Metal Substrates: A Review,” Small Methods, vol. 3, no. 7, p. 1900049, 2019, doi: 10.1002/smtd.201900049.
E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, “Roughness parameters,” J. Mater. Process. Technol., vol. 123, no. 1, pp. 133–145, 2002, doi: 10.1016/S0924-0136(02)00060-2.
A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol., vol. 8, no. 4, pp. 235–246, 2013, doi: 10.1038/nnano.2013.46.
L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5, pp. 51–87, 2009, doi: 10.1016/j.physrep.2009.02.003.
DasA. et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol., vol. 3, no. 4, pp. 210–215, Apr. 2008, doi: 10.1038/nnano.2008.67.
O. Frank, J. Vejpravova, V. Holy, L. Kavan, and M. Kalbac, “Interaction between graphene and copper substrate: The role of lattice orientation,” Carbon N. Y., vol. 68, pp. 440–451, 2014, doi: https://doi.org/10.1016/j.
carbon.2013.11.020.
A. J. Marsden et al., “Is graphene on copper doped?,” Phys. status solidi – Rapid Res. Lett., vol. 7, no. 9, pp. 643–646, Sep. 2013, doi: https://doi.org/10.1002/pssr.201307224.