Effects of chromium on oxygen consumption and ammonium excretion in freshwater tilapia (Oreochromis niloticus)

Main Article Content

Bessie Evelyn Oliva-Hernández
Edison Barbieri
Juan Francisco Pérez-Sabino
Rooel Campos Rodríguez

Abstract

Chromium VI contamination in bodies of water has occurred due to the discharge of industrial wastewater, which may come from the tanning, mining, or electroplating industry, causing serious problems for aquatic fauna, mainly fish, which may suffer histopathological alterations in gills, kidneys and intestines. This study aimed to evaluate the effect of different chromium concentrations (0.0 (control), 1.0, 5.0, 10.0, 15.0 and 30.0 mg/L) on oxygen consumption and ammonium excretion in freshwater tilapia (Oreochromis niloticus), since this species has a nutritional and economic interest in different communities of the country. This study was carried out using 42 juvenile tilapia fish weighing between 1 and 3 grams, which were placed in six tanks with different chromium concentrations. After 4 hours of exposure, they were transferred to a system with recirculating water and individual respirometers. For each concentration, a battery of 7 fish was used, to which the oxygen consumption and ammonia excretion of each respirometer were determined. The results showed that by increasing the concentration of chromium in the water (p < 0.05), oxygen consumption decreased up to 62.8% from
0.4168 mL/g/L in the control group to 0.1550 mL/g/h in the concentration of 30.0 mg/L of chromium (VI). The ammonium excretion showed the highest concentration (p < 0.05), after the fish were exósed to having been exposed to a concentration of 1 mg/L of Cr6+.

Article Details

How to Cite
Oliva-Hernández, B. E., Barbieri, E., Pérez-Sabino, J. F., & Campos Rodríguez, R. (2024). Effects of chromium on oxygen consumption and ammonium excretion in freshwater tilapia (Oreochromis niloticus). Tecnología En Marcha Journal, 37(4), Pág. 48–60. https://doi.org/10.18845/tm.v37i4.6883
Section
Artículo científico

References

W. M. Warren-Vega, A. Campos-Rodríguez, A. I. Zárate-Guzmán, and L. A. Romero-Cano, “A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies,” in “International Journal of Environmental Research and Public Health,”, Mar. 2023, vol. 20, no. 5, p. 4499, doi: 10.3390/ijerph20054499.

Singh et al., “Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms”, The Toxicity of Environmental Pollutants. IntechOpen, Nov. 30, 2022. doi: 10.5772/intechopen.105075.

Chaudhary et al., “Study on histo-chemical biomarkers of chromium induced toxicity in Labeo rohita,” Emerging Contaminants. Sept. 2023. https://doi.org/10.1016/j.emcon.2023.100204

C. Lau., C. Le. Cadmium, chromium, copper, iron, lead, mercury, nickel, and zinc in freshwater fish: Assessing trophic transfer using stable isotope ratios of δ15N and δ13C. in “Journal of Environmental Sciences”. Jan. 2023. vol 128 pp 250-257.

A. A. Ibrahim-Alsaid, et al. Determination of trace metal levels in the sea and fresh water in Oman by using inductively coupled plasma-optical emission spectroscopy. Arab J Geosci 16, 122, 2023, https://doi.org/10.1007/s12517-023-11210-w

A. Y. Karim. Distribution of 26 metals in the waters of the aquatic ecosystems of the Cotonou Channel and Lake Nokoué, Benin. Journal of Materials Science and Chemical Engineering, Feb. 2023 11, 13-28. doi:10.4236/msce.2023.112002.

J. G. Silva et al. “Genotoxic effect of heavy metals on Nile tilapia (Oreochromis niloticus) species in a urban river in northeastern Brazil” in “Research Square”. doi.org/10.21203/rs.3.rs-2778213/v1

H.H. Abbas and F.K. Ali. “Study the effect of hexavalent chromium on some biochemical, citotoxicological and histopatologycal aspects of the Oreochromis spp. fish”, in “Pakistan Journal of Biological Sciences”: PJBS. 2007 Nov 10 (22) 3973-3982. DOI: 10.3923/pjbs.2007.3973.3982. PMID: 19090268.

J. Sturla-Lompré., et al. “Effects of carbon nanoparticles and chromium combined exposure in native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) Clams. Nanomaterials. 2023, 13, 690. https://doi.org/10.3390/ nano13040690

A.B. Yilmaz et. Al. “Uptake and distribution of hexavalent chromium in tissues (gill, skin and muscle) of a freshwater fish, Tilapia, Oreochromis aureus” in “Journal of Environmental Chemistry and Ecotoxicology”, vol 2(3), pp 2-33 April 2010. ISSN2141 – 226X © 2010 Academic Journals.

S.S. Vutukuru. “Acute effects of hexavalent chromium on survival, oxygel consumption, hematological parameters and some biochemical profiles of the Indian Mayor Carp, Labeo rohita”, in “Environmental Research and Public Health”. 2002, 2(3). 456-462. ISSN 1660-4601.

A.A.R. Mohamed, et al. “Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GCT genes of Oreochromis niloticus fish: Role of curcumin supplement diet” in Exotoxicology and Environmental Safety, vol 188, Jan 2020. doi.org/10.1016/j.ecoenv.2019.109890

V. Wepener et al. “The effect of hexavalent chromium at different pH values on the jaematology of Tilapia sparrmanii (Cichlidae)”, in “Comparative Biochemistry and Physiology Part C: Comparative Pharmacology”, vol 101 (2) Feb 1992, 375-381.

E. Barbieri., et al. “Bagre estuarino Cathorops spixii como bioindicador de matais pesados: um estudo de caso”, en Engenharia de Pesca: aspectos teóricos e práticos. Cananéia, Brasil. 2022 Ch 6. Vol 3. pp 106-116. Doi 10.37885/211206960

M. Barbosa-Henriques et al., “Sublethal of propiconazole on the metabolism of lambari Deuterodon iguape (Eigenmann 1907), a native species from Brazil”, in Fish Physiology and Biochemistry. Springer. Jun. 2021. Vol 47 pp. 1165-1177. doi.org/10.1007/s10695-021-00968-z

R. C. Mendes et al. “Carbofuran affects behavior and metabolism of the Atlantic Forest lambari Seuterodon iguape a native species from Brazil” in “Environmental Science and Pollution Reseacrh” 2021. vol 28. 61128-61136. doi.org/10.1007/s11356-021-15071-2

M. I. de Oliveira-Eiras., et al. “Cooper II oxide nanoparticles (CuONPs) alter metabolic markers and swimming activity in zebra-fish (Danio rerio)”. “Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. vol. 257, July 2022, 109343. https://doi.org/10.1016/j.cbpc.2022.109343

C. A. Da Silva et al., “Effects of mycogenic nanoparticles on organisms of different trophic levels”, in “Chemosphere” Elsevier. Dec. 2022. Vol 308, Part 3. doi.org/10.1016/j.chemosphere.2022.136540

FAO. “Oreochromis niloticus”, in “Cultured aquatic species fact sheets”. Text by J.E. Rakocy. Edited and compiled by Valerio Crespi and Michael New. Fao.org.

W. El-Houseiny et al. “Renal Damage, and Pseudomonas aeruginosa susceptibility in Oreaochromis niloticus”. “Antioxidants 2022 Vol 11, (6), 1185; doi.org/10.3390/antiox11061185

F. Barreto-Curiel et al. Crecimiento, excreción de amonio y consume de oxígeno de la tilapia hibrida roja (Oreochromis mossambicus x Oreochromis aureaus) cultivada en agua de mar y en agua dulce” en “Ciencias Marinas”, vol 41 No.3. Ensenada sep. 2015. Versión impresa ISSN 0185-3880

S. Özçelik and M. Canli. “Combined effects of metals (Cr6+, Hg2+, Ni2+, Zn2+) and calcium on the serum biochemistry and food quality of the Nile fish (Oreochromis niloticus)”. “Journal of Food Composition and Analysis”. Vol. 115: 104968. doi.org/10.1016/j.jfca.2022.104968

D. Roy et al., “Bioaccumulation of heavy metal in urban pond reared Oreochomis niloticus, water, sediment, and handmade feed in Bangladesh and human health risk implications. “Arabian Journal of Geosciences”. May. 2022. Vol. 15: 959. doi.org/10.1007/s12517-022-10260-w

D. Ghosh and S.K. Saha. “Determination of the lethal concentration 50% (LC50) of hexavalent Chromium in Nile Tilapia (Oreochromis niloticus), “Advances in Zoology and Botany, Vol. 10, No. 4, 99 123-131. Sept. 2022. Doi: 10.13189/azb.2022.100406.

N.B. Metcalfe et al. “Does individual variation in metabolic phenotype predict fish behavior and performance?” in “Journal of Fish Biology”, vol 88, 298-321. 2016. https://doi.org/10.1111/jfb.12699

D. Chabot et al (a). “Metabolic rate in fishes: definitions, methods and significance for conservation physiology” in “Journal of Fish Biology”, vol 88, 1-9. 2016. Ddoi:10.1111/jfb.12873.

T. Norin, T.D. Clark. “Measurement and relevance of maximum metabolic rate in fishes”, in “Journal of Fish Biology”, vol 88, 122-151. 2016. https://doi.org/10.1111/jfb.12796

E.J. Eliason, A.P. Farrell. “Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet”, in “Journal of Fish Biology”, vol 88, 359-388. doi:10.1111/jfb.12790

K, Yuen and S.F. Chew. “Ammonia production, excretion, toxicity, and defense in fish: a review” in “Frontiers in Physiology”. Oct 2010. doi: 10.3389/fphys.2010.00134

M.N. Kutty. “Respiratory quotient and ammonia excretion in Tilapia mossambica” in “Marine Biology”. Vol 16, 126-133 (1972).

D. Chabot et al (b). “The determination of standard metabolic rate in fishes”, in “Journal of Fish Biology”, vol 88, 81-121. 2016. https://doi.org/10.1111/jfb.12845

Fishbio. Heart-Stopping Science: The importance of fish physiology. Aug. 2015. Available: https://fishbio.com/heart-stopping-science-the-importance-of-fish-physiology/

C. Jorgensen, et al. “Modelling and interpreting fish bioenergetics: a role for behaviour, life-history traits and survival trade-offs”, in “Journal of Fish Biology”, vol 88, 389-402. doi:10.1111/jfb.12834

S.J. Kaushik. “Factores que afectan la excreción nitrogenada en teleósteos y crustáceos”, en “ACU, nov. 2019

Barbieri, E. (2007). Use of Oxygen Consumption and Ammonium Excretion to Evaluate the Sublethal Toxicity of Cadmium and Zinc on Litopenaeus schmitti (Burkenroad, 1936, Crustacea). Water environment research. Vol. 79, 6.

Barbieri E. Branco, J.; Santos, M.; Hidalgo, K. (2013). Effects of cadmium and zinc on oxygen consumption and ammonia excretion of the Sea-Bob shrimp, according to the temperature. Boletin instituto de Pesca, Sao Paulo. 39(3): 299-309.

Santos, D.; Barbieri, E.; Bolondi, A.; Melo, C. (2014). Effects of lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. O Mundo da Saúde, Sao Paulo. Vol 38 (1): 16-23.

Barbieri, E.; Oliveira, K.; Schultz, J.; Barbosa, M. (2019). Metabolic and histological alterations after exposing Deuterodon iguape to different salinities. Boletim do Instituto de Pesca. Instituto de Pesca. ISSN 1678-2305 inline version.

Barbieri E.; Tavares, E. (2011). The use of oxygen consumption and ammonium excretion to evaluate the toxicity of cadmium on Farfantepenaus paulensis with respect to salinity. Chemosphere. Vol. 84, 9-16

I.M. Elsaeidy, et al. “Multiple biomarkers response in Nile tilapia, Oreochromis niloticus (L.) exposed to sublethal concentrations of hexavalent chromium”, in “Egypt. J. Aquat. Biol. & Fish”. Vol 20, No. 2:37-49 (2016). ISSN 1110-6131

Z. Yu, et al. Toxic effects of hexavalent chromium (Cr6+) on bioaccumulation. Apoptosis, oxidative damage and inflammatory response in Channa asiatica”, in “Environmental Toxicology and Pharmacology. Vol 87, oct 2021. doi.org/10.1016/j.etap.2021.103725

J.H. Kim and J.C. Kang. “The toxic effects in the stress and immune responses in juvenile rockfish, Sebastes schlegelii exposed to hexavalent chromium” in “Environmental Toxicology and Pharmacology”, vol 43 april 2016 128-133.

H.Lorenzo-Márquez. (2016). “Estimación de riesgo de exposición a metales pesados por consumo de plecos (Pterygoplichthys spp.) en infantes de comunidades ribereñas de los ríos Grijalva y Usumacinta, México”.

S. Dhanakumar et all. (2014). “Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India”. Ecotoxicol Environ Saf. 2015 Mar;113:145-51. doi: 10.1016/j.ecoenv.2014.11.032. Epub 2014 Dec 10. PMID: 25497770.

E. Baysoy et al. (2012). “The effects of salinity and salinity + metal (Chromium and Lead) exposure on ATPase activity in the gill and intestine of Tilapia Oreochromis niloticus” in Archives of Environmental Contamination and Toxicology, 64(2), 291-300. Doi:10.1007/s00244-012-9825-9.

]Z. Hossain et al. (2021). Heavy metal toxicity in Buriganga river alters the immunology of Nile tilapia (Oreochromis niloticus L) in “Heliyon 7 e08285.

P.J. Pradeep et al. (2011) Trend in ammonia excretion during acclimatizarion of adult freshwater red hybrid Tilapia Oreochromis mossambicus (Peters, 1852) C Oreochromis niloticus (Linnaeus, 1758) in different salinities in “Our Nature. 9:34-40.

S. Aslam & A.M. Yousafzai. (2017). “Chromium toxicity in fish: A review article”. Journal of Entomologuy and Zoology Studies. 5(3): 1483-1488.

E. Barbieri & L.A. Alves Ferreira. (2011). Effects of the organophosphate pesticide Folidol 600® en the freshwater fish, Nile Tilapia (Oreochromis niloticus) in “Pesticide Biochemistry and Physiology. 99: 209-214. https://doi.org/10.1016/j.pestbp.2010.09.002

A.C.K. Benli et al. (2008). Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L): Effects on gill, liver and kidney histology in “Chemosphere” 72:1355-1358. https://doi.org/10.1016/j.chemosphere.2008.04.037

E. Sherif et al. (2008). Effect of ammonia on Nile Tilapia (O niloticus) performance and some hematological and histological measures. International Symposium on Tilapia in Aquaculture. 513-531.

C.S. Carvalho et al. (2012). Biomarker responses as indication of contaninant effects in Oreochromis niloticus, in “Chemosphere” 89:60-69. https://doi.org/10.1016/j.chemosphere.2012.04.013

Z. Birungi et al. (2007). Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria in “Physics and Chemistry of the Earth 32: 1350-1358. https://doi.org/10.1016/j.pce.2007.07.034

E. Barbieri. Effect of 2,4-D herbicide (2,4-dichlorophenoxyacetic acid on oxygen consumption and ammonium excretion of juveniles of Geophagus brasiliensis (Quo Y Gaimard, 1824) (Osteichthyes, cichlidae) in “Ecotoxicology”. DOI 10.1007/s10646-008-0256-3

Most read articles by the same author(s)