Modelagem computacional da resposta transitória de sistemas de aterramento por meio de circuitos equivalentes

Contenido principal del artículo

Arthur Francisco Andrade
Edson Guedes da Costa
George Rossany Soares de Lira
Marconni Freitas Barroso Ribeiro Gonçalves

Resumen

De modo a viabilizar a modelagem de sistemas de aterramento em estudos sistêmicos e de cálculo de transitórios e aumentar a exatidão e confiabilidade dos modelos utilizados, circuitos equivalentes devem ser estudados de modo a possibilitar a representação de efeitos dinâmicos, de dependência com a frequência dos parâmetros de solo e de ionização do solo. Neste sentido, este artigo apresenta uma metodologia que une simulação eletromagnética com o método dos elementos finitos (MEF) a uma etapa de otimização no domínio do tempo, a qual possibilita a obtenção de circuitos equivalentes de sistemas de aterramento ainda na etapa de projeto. A metodologia foi avaliada mediante dois casos de estudo. Inicialmente, três diferentes topologias de circuito tiveram seus parâmetros ajustados a partir de simulações da resposta de um sistema de aterramento composto por uma haste para diferentes níveis de resistividade do solo. A metodologia proposta se mostrou flexível e adequada à representação de sistemas de aterramento instalados em solos com uma ampla faixa de valores de resistividade do solo, com níveis de erro menores que 2%. Em seguida, demonstrou-se a aplicabilidade da metodologia para modelar uma resposta não-linear associada à ionização do solo. Os resultados evidenciam que a inserção de modelos de circuito aprimorados possibilita uma maior confiabilidade no planejamento de sistemas elétricos de potência.

Detalles del artículo

Cómo citar
Francisco Andrade, A. ., Guedes da Costa, E. ., Rossany Soares de Lira, G. ., & Ribeiro Gonçalves, M. F. B. . (2021). Modelagem computacional da resposta transitória de sistemas de aterramento por meio de circuitos equivalentes. Revista Tecnología En Marcha, 34(7), Pág 158–170. https://doi.org/10.18845/tm.v34i7.6026
Sección
Artículo científico

Citas

A. R. Hileman, Insulation coordination for power systems. CRC Press,1999.

H. Griffiths e N. Pilling, “Earthing,” in Advances in High Voltage Engineering, A. Haddad and D. Warne, Eds., Stevenage, UK: The Institution of Engineering and Technology, 2004.

T. A. Papadopoulos et al., “Impact of the Frequency-Dependent Soil Electrical Properties on the Electromagnetic Field Propagation in Underground Cables,” in International Conference on Power Systems Transients (IPST2019) in Perpignan, France June 17-20, 2019.

A. Haddad et al., “Power System Test Cases for EMT-type Simulation Studies,” in International Conference on Power Systems Transients (IPST2019) in Perpignan, France June 17-20, 2019.

J. Mahseredjian, V. Dinavahi, and J.A. Martinez, “Simulation Tools for Electromagnetic Transients in Power Systems: Overview and Challenges,” IEEE Trans. Power Del., vol. 24, issue 3, pp. 1657-1669, Jul. 2009. in International Conference on Power Systems Transients (IPST2019) in Perpignan, France June 17-20, 2019.

M. Ghomi et al., “Full-Wave Modeling of Grounding System: Evaluation The Effects of Multi-Layer Soil and Length of Electrode on Ground Potential Rise,” in International Conference on Power Systems Transients, Perpignan, França, 2019.

R. L. Smith-Rose, “The Electrical Properties of Soil for Alternating Currents at Radio Frequencies,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 140, no. 841, pp. 359–377, 1933.

J. He, R. Zeng e B. Zhang, Methodology and Technology for Power System Grounding. 1st ed. Wiley – IEEE Press, 2013, pp. 31–35.

S. Visacro, “A comprehensive approach to the grounding response to lightning currents,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 381–386, Jan. 2007.

A. M. Mousa, “The soil ionization gradient associated with discharge of high currents into concentrated electrodes,” in IEEE Trans. Power Deliv., vol. 9, no. 3, pp. 1669-1677, July 1994.

N. Harid et al., “On the analysis of impulse test results on grounding systems,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 5324–5334, Jun. 2015.

A. Habjanic and M. Trlep, “The simulation of the soil ionization phenomenon around the grounding system by the finite element method,” in IEEE Trans. Magn., vol. 42, no. 4, pp. 867-870, April 2006.

H. Chen, Y. Du, “Lightning grounding grid model considering both the frequency-dependent behavior and ionization phenomenon,” IEEE Trans. Electromagn. Compat., vol. 6, no. 1, pp. 157–165, Jan. 2018.

M. Moradi, “Analysis of Transient Performance of Grounding System Considering Frequency-Dependent Soil Parameters and Ionization,” in IEEE Trans. Electromagn. Compat., vol. 62, no. 3, pp. 785-797, June 2020.

S. Sekioka, “Frequency and current-dependent grounding resistance model for lightning surge analysis,” IEEE Trans. Electromagn. Compat., vol. 61, no. 2, pp. 419–425, Jul. 2018.

M. Mokhtari, Z. Abdul-Malek, Z. Salam, “An improved circuit-based model of a grounding electrode by considering the current rate of rise and soil ionization factors,” IEEE Trans. Power Deliv., vol. 30, no. 1, pp. 211–219, Aug. 2014.

G. Celli, E. Ghiani, e F. Pilo, “Behaviour of grounding systems: A quasi-static EMTP model and its validation,” Electr. Power Syst. Res., vol. 85, pp. 24–29, 2012.

C. M. Seixas e S. Kurokawa, “Using circuit elements to represent the distributed parameters of a grounding systems under lightning strokes,” in 2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, Brazil, 2-6 Oct. 2017, pp.28–34.

A. De Conti e R. Alípio, “Single-port equivalent circuit representation of grounding systems based on impedance fitting,” IEEE Trans. Electromagn. Compat., vol. 61, no. 5, pp. 1683–1685, Sept. 2018.

A. Manunza, “Grounding grids in electro-magnetic transient simulations with frequency dependent equivalent circuit,” Electr. Power Energy Syst., vol. 116, p. 105546, Mar. 2020.

A. F. Andrade et al., “Analysis of the Frequency Response of a Grounding System Using the Finite Element Method,” in Lecture Notes in Electrical Engineering, Bálint Németh, Ed. 1 ed. Suíça: Springer, 2019, pp. 1491–1501.

M. Loboda and Z. Pochanke, “A numerical identification of dynamic model parameters of surge soil conduction based on experimental data,” in 21st International Conference on Lightning Protection, Berlim, 21-25 Sept. 1992, pp. 139–143.

R. A. C. Altafim et al., “One-port nonlinear electric circuit for simulating grounding systems under impulse current,” Electric. Power Syst. Res., vol. 130, pp. 259–265, Jan. 2016.

M. F. B. R. Gonçalves et al. “Grounding system models for electric current impulse,” Electr. Power Syst. Res., vol. 177, p. 105981, Dec. 2019.

K. Berger, R.B. Anderson and H. Kroninger, “Parameters of Lightning Flashes,” Electra, No. 41, pp. 23-37, July 1975.

R. Alipio and S. Visacro, “Modeling the Frequency Dependence of Electrical Parameters of Soil,” IEEE Trans. Electromagn. Compat., vol. 56, no. 5, pp. 1163-1171, Oct. 2014.

A. F. Andrade, E. G. Costa, M. F. Gonçalves, G. R. Lira, and R. Teixeira, “Modeling grounding systems response to current impulses considering nonlinear effects,” IEEE Trans. Power Deliv., 2021.

S. Sekioka, M. I. Lorentzou, M. P. Philippakou and J. M. Prousalidis, “Current-dependent grounding resistance model based on energy balance of soil ionization,” IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 194-201, Jan. 2006.

A. C. Liew e M. Darveniza, “Dynamic model of impulse characteristics of concentrated earths,” Proc. IEE, vol. 121, no. 2, pp. 123-135, Fev. 1974.