Irrigation and nutrition management strategies in greenhouse hydroponic tomato: effect on yield and water efficiency

Main Article Content

Freddy Soto-Bravo

Abstract

In modern agriculture, efficient use of water and fertilizers is imperative to meet the growing global demand for food driven by rapid population growth and the potential global water crisis exacerbated by climate change. This study was conducted on hydroponic tomato cultivation in a greenhouse, including six treatments that combined three levels of nutrition (low, medium, and high) and two irrigation strategies (lower volume with higher frequency and higher volume with lower frequency). Irrigation and drainage volumes, crop evapotranspiration (ETc), drainage electrical conductivity (CE), volumetric humidity in the substrate (θ), dry weight (PS), leaf area (AF), total fruit yield, commercial yield of different qualities and waste, and water use efficiency (WUE) were evaluated. There was no effect of the interaction between the level of nutrition and irrigation strategy for any of the variables. Treatments with optimal nutrition achieved the highest WUE, associated with a higher production of commercial first-quality fruits, less waste, and a reduced ETc compared to high nutrition. In contrast, treatments with high nutrient concentrations increased water demand and substrate EC, negatively affecting yield and WUE. The combination of medium nutrition with irrigation adjusted to crop demand favored a better root environment of humidity and salinity, which in turn benefited a more balanced vegetative/productive growth, which was reflected in higher yield and fruit quality, and in the USA.

Article Details

How to Cite
Soto-Bravo, F. (2025). Irrigation and nutrition management strategies in greenhouse hydroponic tomato: effect on yield and water efficiency. Tecnología En Marcha Journal, 38(4), Pág. 170–181. https://doi.org/10.18845/tm.v38i4.7652
Section
Artículo científico

References

[1] F. Soto-Bravo, A. Betancourt-Flores, “Comportamiento vegetativo-generativo de tomate y chile dulce hidropónico en invernadero, sometidos a agotamiento hídrico,” Agronomía Costarricense, vol. 47, no. 1, pp. 09-26, 2024.

[2] H. J. Muhasin, A. Y. Gheni, N. I. I. Tajuddin, N. A. Izni, Y. Y. Jusoh y K. A. Aziz, “A systematic literature review for smart hydroponic system,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 1, pp. 1–10, 2024. DOI: 10.11591/eei.v13i1.4738.

[3] F. Tran, J. Holland, N. Quesada, M. Young, D. Bienkowski, D. Savvas et al., “What evidence exists on the effectiveness of the techniques and management approaches used to improve the productivity of field-grown tomatoes under conditions of water-, nitrogen- and/or phosphorus-deficit? A systematic map,” Environmental Evidence, vol. 10, pp. 1-17, 2021. DOI: 10.1186/s13750-021-00229-9.

[4] H. Li, X. Mei, J. Wang, F. Huang, W. Hao, y B. Li, “Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China,” Agricultural Water Management, vol. 244, pp. 106534, 2021. DOI: 10.1016/J.AGWAT.2020.106534.

[5] S. Liu, X. Qiang, H. Liu, Q. Han, P. Yi, H. Ning, H. Li, C. Wang y X. Zhang, “Effects of nutrient solution application rates on yield, quality, and water–fertilizer use efficiency on greenhouse tomatoes using grown-in coir,” Plants, vol. 13, pp. 1–20, 2024. DOI: 10.3390/plants13060893.

[6] H. Méndez, R. Pertierra, y C. Balmaseda, “Eficiencia del agua en tomate cultivado en sustrato inerte,” Revista Científica y Tecnológica UPSE, vol. 10, no. 2, pp. 23–34, 2023, doi: 10.26423/rctu.v10i2.753.

[7] AENOR (Asociación Española de Normalización y Certificación), “UNE-EN 13041: Mejoradores de suelos y sustratos de cultivo. Determinación de las propiedades físicas: Densidad aparente seca, volumen de aire, volumen de agua, valor de contracción y porosidad total,” Madrid, España, AENOR. 2007.

[8] F. Soto-Bravo y Rodríguez-Ocampo, “Crecimiento, evapotranspiración y uso de nutrientes en cultivo hidropónico de Eryngium foetidum, en dos diferentes ambientes y niveles de nutrición,” Agronomía Costarricense, vol. 46, no. 1, pp. 09-26, 2021.

[9] Quesada, G, “Producción de chile dulce en invernadero bajo diferentes niveles de agotamiento en la humedad del sustrato,” Agronomía Costarricense vol. 39, no. 1, pp. 25-36, 2015.

[10] J. A. Di Rienzo, A. W. Guzmán, F. Casanoves, “InfoStat, versión 2012,” Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 2002

[11] U. Shareef, A. U. Rehman, y R. Ahmad, “A systematic literature review on parameters optimization for smart hydroponic systems,” AI, vol. 5, no. 3, pp. 73–85, 2024. DOI: 10.3390/ai5030073.

[12] S. Guo, L. Wu, X. Cao, X. Sun, Y. Cao, Y. Li y H. Shi, “Simulation Model Construction of Plant Height and Leaf Area Index Based on the Overground Weight of Greenhouse Tomato: Device Development and Application,” Horticulturae, vol. 10, no. 3, pp. 270, 2024. DOI: 10.3390/horticulturae10030270.

[13] X. Wang, J. Yun, P. Shi, Z. Li, P. Li, y Y. Xing, “Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels,” Journal of Plant Growth Regulation, vol. 38, pp. 400–415, 2019. DOI: 10.1007/s00344-018-9850-7.

[14] X. Gong, R. Qiu, J. Sun, J. Ge, L. Yanbin, y S. Wang, “Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation,” Agricultural Water Management, vol. 235, pp. 106154, 2020. DOI: 10.1016/j.agwat.2020.106154.

[15] D. Neocleous y D. Savvas, “Validating a smart nutrient solution replenishment strategy to save water and nutrients in hydroponic crops,” Frontiers in Environmental Science, vol. 10, pp. 1–12, 2022. DOI: 10.3389/fenvs.2022.965964.

[16] T. Ahn, J.-S. Yang, S. Park, H. W. Moon, y J. Y. Lee, “Translation of irrigation, drainage, and electrical conductivity data in a soilless culture system into plant growth information for the development of an online indicator related to plant nutritional aspects,” Agronomy, 2020. DOI: 10.3390/agronomy10091306.

[17] G. E. Aslan, R. Baştuğ, C. Karaca, A. Kurunç, D. Buyuktas, y A. Navarro, “Effects of saline irrigation water applications on evapotranspiration partitioning and crop coefficient of tomato grown in Mediterranean-type greenhouses,” Agronomy, 2024. DOI: 10.3390/agronomy14081771.

[18] R. Madugundu, K. A. Al-Gaadi, E. Tola, V. C. Patil y N. Sigrimis, “The Impact of Salinity and Nutrient Regimes on the Agro-Morphological Traits and Water Use Efficiency of Tomato under Hydroponic Conditions,” Applied Sciences, vol. 13, pp. 9564, 2023. DOI: 10.3390/app13179564.

[19] E. Choi, Y. Woo, S. Min, K. Choi y Y. Lee, “Nutrient solution concentration effects on non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a FDR sensor,” Journal of Plant Nutrition, vol. 37, no. 6, pp. 748–764, 2014. DOI: 10.1080/01904167.2013.868479.

[20] M. Alfosea-Simón, E. A. Zavala-González, J. M. Cámara-Zapata, J. J. Martínez-Nicolás, I. Simón, S. Simón-Grao, y F. García-Sánchez, “Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system,” Scientia Horticulturae, vol. 272, pp. 109509, 2020. DOI: 10.1016/j.scienta.2020.109509.

[21] S. T. Patil, U. S. Kadam, M. Mane, D. M. Mahale y J. S. Dhekale, “Hydroponic Growth Media (Substrate): A Review,” International Research Journal of Pure and Applied Chemistry, vol. 21, no. 23, pp. 106–113, 2020. DOI: 10.9734/irjpac/2020/v21i2330307.

[22] D. Savvas, E. Stamati, I. Tsirogiannis, N. Mantzos, P. Barouchas, N. Katsoulas y C. Kittas, “Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems,” Agricultural Water Management, vol. 91, pp. 102-111, 2007. DOI: 10.1016/J.AGWAT.2007.05.001.

[23] N. Nasir y T. Sato, “Effect of nutrient solution concentration on growth, yield, and fruit quality of tomato grown hydroponically in single-truss production system,” Journal of Horticultural Research, vol. 31, no. 2, pp. 45-53, 2023. doi: 10.2478/johr-2023-0034.

[24] N. S. Dias, A. A. Diniz, P. L. D. Morais, G. S. Pereira, F. V. S. Sá, B. G. A. Souza, L. F. Cavalcante, y M. F. Neto, “Yield and quality of cherry tomato fruits in hydroponic cultivation,” Bioscience Journal, vol. 35, no. 5, pp. 1470–1477, 2019. DOI: 10.14393/BJ-v35n5a2019-42345.

[25] N. S. Dias, A. A. Diniz, P. L. D. Morais, G. S. Pereira, F. V. S. Sá, B. G. A. Souza, L. F. Cavalcante, y M. F. Neto, “Yield and quality of cherry tomato fruits in hydroponic cultivation,” Bioscience Journal, vol. 35, no. 5, pp. 1470–1477, 2019. DOI: 10.14393/BJ-v35n5a2019-42345.

[26] R. Liao, S. Zhang, X. Zhang, M. Wang, H. Wu, y L. Zhangzhong, “Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept,” Agricultural Water Management, vol. 245, art. no. 106632, 2021. DOI: 10.1016/j.agwat.2020.106632.

[27] Q. Wang, Y. Jia, Z. Pang, J. Zhou, K. E. Scriber II, B. Liang y Z. Chen, “Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production,” Agricultural Water Management, vol. 298, 2024, Art. no. 108873. DOI: 10.1016/j.agwat.2024.108873.

[28] S. Wu, Q. Li, B. Cao, y L. Yu, “Responses of growth, fruit yield, quality, and water productivity of greenhouse tomato to deficit drip irrigation,” Scientia Horticulturae, vol. 275, art. no. 109710, 2021. DOI: 10.1016/j.scienta.2020.109710.