Optimization of somatic embryogenesis in Coffea arabica: evaluation of leaf explant orientation and origin

Main Article Content

Daniela Vargas-Morera
Roselind Vargas-Delgado
Steven Ceciliano-Castro

Abstract

Coffee (C. arabica) farming in Costa Rica is facing several challenges due to climatic changes
and market fluctuations. The search for higher quality and more resistant varieties has led to
the research of new alternative propagation methods, such as somatic embryogenesis (SE),
which allows the generation of new subspecies under controlled laboratory conditions. Direct
propagation, without callus, has a significant influence on explant success depending on leaf
orientation and the origin of the sample. To prove this, this work evaluates the effect of the adaxial
and abaxial orientation of C. arabica leaves obtained from distal, proximal and medial points
of vitroplants for the induction of direct somatic embryogenesis. Leaf sections were placed into
supplemented Murashige and Skoog (MS) culture medium. Multivariate analysis was performed
to know which combination of treatments led to a better response to SE, and it is shown using a
heat map. About 36% regeneration callus was produced by introducing explants in adaxial form
with decreased oxidation. Furthermore, distal and medial parts exhibited higher regenerative
capacity. Adaxial orientation of C. arabica leaves promoted somatic embryo induction possibly
by enhancing gas exchange due to hypostomatic leaf feature. By optimizing this protocol, the
plant introduction process from leaves may beimproved with a higher expected success rate.

Article Details

How to Cite
Vargas-Morera, D., Vargas-Delgado, R., & Ceciliano-Castro, S. (2024). Optimization of somatic embryogenesis in Coffea arabica: evaluation of leaf explant orientation and origin . Tecnología En Marcha Journal, 37(9), Pág. 152–160. https://doi.org/10.18845/tm.v37i9.7620
Section
Artículo científico

References

S. Ahmed et al., “Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and

Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora,” Front. Plant Sci., vol. 12, Oct. 2021, doi: 10.3389/fpls.2021.708013.

R. H. Perez, Y. C. Adriana, A. C. Sancho, M. V. Chinchilla, and J. M. C. Subirachs, “Influencia de un nuevo

bioestimulante sobre la floración y fructificación en café (Coffea arabica L).,” Rev. ESPAMCIENCIA ISSN 1390-

, vol. 12, no. 1, Art. no. 1, Jun. 2021, doi: 10.51260/revista_espamciencia.v12i1.226.

Instituto Nacional de Estadística y Censos (INEC), “Resultados generales de la actividad agrícola y forestal.,”

Encuesta Nacional Agropecuaria 2021, 2021. [Online]. Available: https://admin.inec.cr/sites/default/files/2022-

/reagropecENAAGR%C3%8DCOLA2021-01.pdf

S. Wagner, L. Jassogne, E. Price, M. Jones, and R. Preziosi, “Impact of Climate Change on the Production

of Coffea arabica at Mt. Kilimanjaro, Tanzania,” Agriculture, vol. 11, no. 1, Art. no. 1, Jan. 2021, doi: 10.3390/

agriculture11010053.

C. A. Harvey et al., “Transformation of coffee-growing landscapes across Latin America. A review,” Agron.

Sustain. Dev., vol. 41, no. 5, p. 62, Aug. 2021, doi: 10.1007/s13593-021-00712-0.

C. M. Avila-Victor, V. M. Ordaz-Chaparro, E. de J. Arjona-Suárez, L. Iracheta-Donjuan, F. C. Gómez-Merino,

and A. Robledo-Paz, “In Vitro Mass Propagation of Coffee Plants (Coffea arabica L. var. Colombia) through

Indirect Somatic Embryogenesis,” Plants, vol. 12, no. 6, Art. no. 6, Jan. 2023, doi: 10.3390/plants12061237.

M. E. Aguilar, X. Wang, M. Escalona, L. Yan, and L. Huang, “Somatic embryogenesis of Arabica coffee in

temporary immersion culture: Advances, limitations, and perspectives for mass propagation of selected genotypes,” Front. Plant Sci., vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.994578.

H. A. Méndez-Hernández et al., “In Vitro Conversion of Coffea spp. Somatic Embryos in SETISTM Bioreactor

System,” Plants, vol. 12, no. 17, Art. no. 17, Jan. 2023, doi: 10.3390/plants12173055.

T. Hazubska-Przybył, M. K. Wawrzyniak, J. Kijowska-Oberc, A. M. Staszak, and E. Ratajczak, “Somatic

Embryogenesis of Norway Spruce and Scots Pine: Possibility of Application in Modern Forestry,” Forests, vol.

, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/f13020155.

M. Zhang et al., “Direct and Indirect Somatic Embryogenesis Induction in Camellia oleifera Abel,” Front. Plant

Sci., vol. 12, p. 644389, Mar. 2021, doi: 10.3389/fpls.2021.644389

R. Arimarsetiowati, B. S. Daryono, Y. T. M. Astuti, E. Prastowo, and E. Semiarti, “Regeneration and development

of Coffea arabica L. plants through indirect somatic embryogenesis,” Coffee Sci. - ISSN 1984-3909, vol. 18,

pp. e182078–e182078, Mar. 2023, doi: 10.25186/.v18i.2078.

A. M. Gatica-Arias, G. Arrieta, and A. M. Espinoza, “Direct somatic embryogenesis in Coffea arabica L. cvs.

Caturra and Catuaí: effect of tricontanol, light condition, and medium consistency,” Agron. Costarric., 2008.

M. S. D. Ibrahim, R. S. Hartati, R. Rubiyo, A. Purwito, and S. Sudarsono, “Direct and Indirect Somatic

Embryogenesis on Arabica Coffee (Coffea Arabica),” Indones. J. Agric. Sci., vol. 14, no. 2, pp. 79–86, Oct.

, doi: 10.21082/ijas.v14n2.2013.p79-86.

J. P. R. Martins, V. Verdoodt, M. Pasqual, and M. De Proft, “Impacts of photoautotrophic and photomixotrophic

conditions on in vitro propagated Billbergia zebrina (Bromeliaceae),” Plant Cell Tissue Organ Cult. PCTOC, vol.

, pp. 121–132, 2015.

A. M. Capelo, S. Silva, G. Brito, and C. Santos, “Somatic embryogenesis induction in leaves and petioles of a

mature wild olive,” Plant Cell Tissue Organ Cult. PCTOC, vol. 103, no. 2, pp. 237–242, Nov. 2010, doi: 10.1007/

s11240-010-9773-x.

J. Sanchéz, R. C. Pintado, and J. J. D, “Inducción de embriogénesis somática a partir de explantes foliares

en tres variedades de café,” Sci. Agropecu., vol. 10, no. 2, pp. 259–264, Apr. 2019, doi: 10.17268/sci.agropecu.2019.02.11.

R. M. Cabrera and K. J. Sánchez, Regeneración de plántulas de café (Coffea arabica L.) mediante embriogénesis somática. Instituto Nacional de Innovación Agraria, 2022. Accessed: Apr. 06, 2024. [Online]. Available:

https://repositorio.inia.gob.pe/handle/20.500.12955/2038

T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue

Cultures.,” Physiol Plant, vol. 15, no. 3, pp. 473–497, 1962.

G. Morel and R. H. Wetmore, “Tissue Culture of Monocotyledons,” Am. J. Bot., vol. 38, no. 2, pp. 138–140,

, doi: 10.2307/2437836.

N. R. Martínez, “‘Establecimiento in vitro de café (coffea arabica) variedad cuscatleco por medio de microesquejes’.,” bachelor, Universidad De El Salvador, 2014. Accessed: May 22, 2024. [Online]. Available: https://

oldri.ues.edu.sv/id/eprint/13735/

A. Gatica-Arias, “Regeneración de plantas de café (coffea arabica cv. Caturra y catuaí) por embriogénesis

somática directa a partir de segmentos de hoja,” 2002, Accessed: Apr. 06, 2024. [Online]. Available: https://

repositoriotec.tec.ac.cr/handle/2238/5647

E. Arias-Pérez, C. Lecona-Guzmán, F. Gutiérrez-Miceli, J. Montes-Molina, and N. Ruiz-Lau, “Encapsulation of

Immature Somatic Embryos of Coffea arabica L. for in Vitro Preservation,” Phyton-Int. J. Exp. Bot., vol. 90, no.

, pp. 1741–1748, 2021, doi: 10.32604/phyton.2021.016004.

K. A. Withers et al., “Auxin Involvement in Ceratopteris Gametophyte Meristem Regeneration,” Int. J. Mol. Sci.,

vol. 24, no. 21, Art. no. 21, Jan. 2023, doi: 10.3390/ijms242115832.

M. Omary, R. Matosevich, and L. Efroni, “Control sistémico de la regeneración de plantas y reparación de

heridas.” Accessed: Apr. 06, 2024. [Online]. Available: https://doi.org/10.1111/nph.18487

C. M. Avila-Victor et al., “EMBRIOGENESIS SOMATICA DIRECTA E INDIRECTA EN Coffea arabica var.

Colombia.,” AGROProductividad, vol. 11, no. 4, pp. 30–36, Apr. 2018, Accessed: Apr. 06, 2024. [Online].

Available: https://go.gale.com/ps/i.do?p=IFME&sw=w&issn=&v=2.1&it=r&id=GALE%7CA619548664&sid=go

ogleScholar&linkaccess=abs

Most read articles by the same author(s)