Verifying the efficiency of application with a spray boom using digital and precision agriculture equipment and manual guidance

Main Article Content

Hazel Priscilla Garro-Ureña
Isaac Javier Mora-González
Natalia Gomez-Calderón
Oscar Quesada-Chacón

Abstract

Digital agriculture is the evolution of precision agriculture. Among the most important technological advances in agriculture, autopilot tractors allow the most efficient use of resources. Therefore, the project aims to validate the efficiency of sprayer application by comparing two tractor guides, one with Trimble autopilot and the other with an operator’s manual guide, when applying a boron-based compound and plant penetrant. Each guide had three passes, collecting data for later processing to determine the percentage of overlap in each. In addition, the team performed three drone flights to capture multispectral images and observe changes in vegetation before and after applying the compound. Based on this, it was concluded that the tractor passes with operator’s manual guidance have a higher overlap percentage than those obtained using the autopilot guide. Moreover, it was determined that product costs and environmental impact increase significantly when manual operator guidance is used compared to automated guidance. In the vegetation indices, only SAVI showed significant changes, while the EVI and AVI indices should not be used in these cases, since they present data with a high variation and an absence of these.

Article Details

How to Cite
Garro-Ureña, H. P., Mora-González, I. J., Gomez-Calderón, N., & Quesada-Chacón, O. (2024). Verifying the efficiency of application with a spray boom using digital and precision agriculture equipment and manual guidance. Tecnología En Marcha Journal, 38(1), Pág. 78–92. https://doi.org/10.18845/tm.v38i1.7046
Section
Artículo científico

References

FAO, «Statistical Yearbook,» Roma, 2022.

E. Vargas Castro, «Uso aparente de plaguicidas en la agricultura de Costa Rica,» Programa de las Naciones Unidas para el Desarrollo, Costa Rica, 2021.

N. Gómez , K. Villagra y M. Solorzano , «La labranza mecanizada y su impacto en la conservación del suelo (revisión de literatura),» Tecnología en marcha, vol. 31, nº 1, 2018.

M. Hernández y N. Chavez, «PNUD,» 2022. [En línea].

Banco Mundial, «Banco Mundial,» 2019. [En línea].

FAO, «Organización de las Naciones Unidas para la Alimentación y la Agricultura,» 2022. [En línea]. Available: https://www.fao.org/3/cb9479es/online/cb9479es.html.

Objetivos de Desarrollo Sostenible, «ODS,» [En línea]. [Último acceso: 2023].

N. Gomez, F. Watson y M. Solórzano, «Importancia de los coeficientes de uniformidad en las operaciones agrícolas asistidas por maquinaria (Nota técnica),» Tecnología en marcha, vol. 36, nº 1, pp. 163-177, 2023.

L. Martínez, «Análisis comparativo entre el Método Leopold y el EPM-Arboleda para la identificación de impactos ambientales en la intervención de vías principales urbanas,» Bucaramanga, 2020.

V. Henrich, G. Krauss, C. Götze y C. Sandow, «Indexdatabase,» 2012. [En línea]. Available: https://www.indexdatabase.de/db/i.php?&order=-name.

A. Madriz, «Costa Rica: el país verde qe urge de un monitoreo de plaguicidad altamente peligrosos.,» La República, 2022.

Watson-Hernández, F., Gómez-Calderón, N., & da Silva, R. P. (2022). Oil Palm Yield Estimation Based on Vegetation and Humidity Indices Generated from Satellite Images and Machine Learning Techniques. AgriEngineering, 4(1), 279–291. https://doi.org/10.3390/agriengineering4010019

Tan, C., Zhou, X., Zhang, P., Wang, Z., Wang, D., Guo, W., & Yun, F. (2020). Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. PLOS ONE, 15(3), e0228500. https://doi.org/10.1371/journal.pone.0228500

Most read articles by the same author(s)