Heavy metals content in sediments of several rivers in Costa Rica

Main Article Content

Guillermo Calvo-Brenes
Noemi Quirós-Bustos
Diana Robles-Chaves
Andrey Caballero-Chavarría

Abstract

Costa Rica has an abundance of water resources, however, it faces a high level of pollution. Heavy metals (PMs) stand out due to their harmful effects on the health of people, animals and plants, as well as their lack of biodegradability and their propensity to accumulate in organisms. This pollution comes from both direct discharges of domestic and industrial wastewater into rivers, as well as diffuse pollution originating from agricultural activities and atmospheric pollution. A recent study carried out in the rivers of Costa Rica revealed the presence of MPs, such as lead, chromium, copper, arsenic, nickel and mercury. The objective of this research was to evaluate the concentration of these metals in river sediments through 26 sampling sites distributed in various areas of the country, covering the period between 2017 and 2019. The toxicity levels for cadmium were classified as not probable, as were the majority of the places sampled for arsenic, lead, chromium and mercury. Regarding copper and nickel, levels ranged from unlikely to undefined toxicity were observed. However, some data related to nickel, copper and chromium were in the zone of probable toxicity.

Article Details

How to Cite
Calvo-Brenes, G., Quirós-Bustos, N., Robles-Chaves, D., & Caballero-Chavarría, A. (2024). Heavy metals content in sediments of several rivers in Costa Rica. Tecnología En Marcha Journal, 37(4), Pág. 141–151. https://doi.org/10.18845/tm.v37i4.6940
Section
Artículo científico

References

G. Calvo-Brenes, Indices e indicadores sobre la calidad del agua, First. Cartago, Costa Rica: Editorial Tecnológica, 2018.

H. Ali, E. Khan, and I. Ilahi, “Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation,” Journal of Chemistry, vol. 2019, pp. 1–14, Mar. 2019, doi: 10.1155/2019/6730305.

A. Mora, M. García-Gamboa, M. S. Sánchez-Luna, L. Gloria-García, P. Cervantes-Avilés, and J. Mahlknecht, “A review of the current environmental status and human health implications of one of the most polluted rivers of Mexico: The Atoyac River, Puebla,” Science of The Total Environment, vol. 782, p. 146788, Aug. 2021, doi: 10.1016/j.scitotenv.2021.146788.

L. T. Popoola, S. A. Adebanjo, and B. K. Adeoye, “Assessment of atmospheric particulate matter and heavy metals: a critical review,” Int. J. Environ. Sci. Technol., vol. 15, no. 5, pp. 935–948, May 2018, doi: 10.1007/s13762-017-1454-4.

T. Salazar-Rojas, F. R. Cejudo-Ruiz, and G. Calvo-Brenes, “Assessing magnetic properties of biomonitors and road dust as a screening method for air pollution monitoring,” Chemosphere, vol. 310, p. 136795, Jan. 2023, doi: 10.1016/j.chemosphere.2022.136795.

G. Calvo-Brenes, Ríos: Fundamentos sobre su calidad y su relación con el entorno socioambiental, First. Cartago, Costa Rica: Editorial Tecnológica, 2015.

X. Leng et al., “Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses,” Chemosphere, vol. 180, pp. 513–522, Aug. 2017, doi: 10.1016/j.chemosphere.2017.04.015.

H. Li, J. Wang, Q. Wang, C. Tian, X. Qian, and X. Leng, “Magnetic Properties as a Proxy for Predicting Fine-Particle-Bound Heavy Metals in a Support Vector Machine Approach,” Environ. Sci. Technol., vol. 51, no. 12, pp. 6927–6935, Jun. 2017, doi: 10.1021/acs.est.7b00729.

Y. Hong et al., “Progress in the Research of the Toxicity Effect Mechanisms of Heavy Metals on Freshwater Organisms and Their Water Quality Criteria in China,” Journal of Chemistry, vol. 2020, pp. 1–12, May 2020, doi: 10.1155/2020/9010348.

T. Salazar-Rojas, F. R. Cejudo-Ruiz, and G. Calvo-Brenes, “Comparison between machine linear regression (MLR) and support vector machine (SVM) as model generators for heavy metal assessment captured in biomonitors and road dust,” Environmental Pollution, vol. 314, p. 120227, Dec. 2022, doi: 10.1016/j.envpol.2022.120227.

S. Stankovic, P. Kalaba, and A. R. Stankovic, “Biota as toxic metal indicators,” Environ Chem Lett, vol. 12, no. 1, pp. 63–84, Mar. 2014, doi: 10.1007/s10311-013-0430-6.

U. C. Nkwunonwo, P. O. Odika, and N. I. Onyia, “A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria,” The Scientific World Journal, vol. 2020, pp. 1–11, Apr. 2020, doi: 10.1155/2020/6594109.

WHO, “What are the WHO Air quality guidelines?: Improving health by reducing air pollution.” 2021. [Online]. Available: https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines

I. W. Delince, “Riesgo agroambiental por metales pesados en suelos con Cultivares de Oryza sativa L y Solanum tuberosum L Heavy metals agroenvironmental risk in soils with cultivate Oryza sativa L. and Solanum tuberosum L,” vol. 24, no. 1, p. 7, 2015.

N. Quirós-Bustos, D. Robles-Chaves, A. Caballero-Chavarría, and G. Calvo-Brenes, “Contenido de metales pesados en varios ríos de Costa Rica,” TM, Mar. 2022, doi: 10.18845/tm.v35i2.5532.

C. Montalvo et al., “Metal Contents in Sediments (Cd, Cu, Mg, Fe, Mn) as Indicators of Pollution of Palizada River, Mexico,” Environment and Pollution, vol. 3, no. 4, pp. 89–98, 2014, doi: 10.5539/ep.v3n4p89.

N. P. Castro-González, F. Calderón-Sánchez, R. Moreno-Rojas, J. V. Tamariz-Flores, and E. Reyes-Cervantes, “Heavy metals pollution level in wastewater and soils in the alto balsas sub-basin in tlaxcala and puebla, Mexico,” Revista Internacional de Contaminacion Ambiental, vol. 35, no. 2, pp. 335–348, 2019, doi: 10.20937/RICA.2019.35.02.06.

EPA, “U.S. EPA Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils.” 2007.

APHA, AWWA and AEF, Standard Methods for the Examination of Water and Wastewater, 23rd ed. WA, DC, USA, 2017.

D. D. MacDonald, C. G. Ingersoll, and T. A. Berger, “Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems,” Archives of Environmental Contamination and Toxicology, vol. 39, no. 1, pp. 20–31, Jun. 2000, doi: 10.1007/s002440010075.

DEC, “Assessment levels for soil, sediment and water.” 2010. [Online]. Available: https://www.der.wa.gov.au/images/documents/your-environment/contaminated-sites/guidelines/2009641_-_assessment_levels_for_soil_sediment_and_water_-_web.pdf

Most read articles by the same author(s)

<< < 1 2 3 > >>