A Single Memristorbased TTL NOT logic

Main Article Content

Abstract

This article presents a NOT logic gate circuit based on a single memristor, and analyzes it for different biological memristive samples based on extracted resistances. The simple resistorvoltage representation of the memristor in the logic circuit is used to formulate a methodology to tune the parameters of the circuit in accordance with TTL voltage values. The logic circuit consists of two resistors in series with the memristor. The input is connected to one end of the memristor, and the output is drawn across the series connection of the second resistor, and the memristor. The methodology comprises of two steps, where, in the first step, the logic ‘low’ TTLinput voltages are examined, and in the second step, the circuit is evaluated for logic ‘high’ TTLinput voltages. The methodology reveals that there is a mínimum voltage value of ‘high’ TTL-input beyond which the output does not fall within the logic ‘low’ TTL-output. The proposed technique may be extended to evaluate novel memristive materials for single memristor-based NOT logic.

Article Details

How to Cite
Hirakjyoti, Suvankar, Deepjyoti, Prachuryya, & Rupam. (2023). A Single Memristorbased TTL NOT logic. Tecnología En Marcha Journal, 36(6), pág 88–94. https://doi.org/10.18845/tm.v36i6.6771
Section
Artículo científico

References

Chua, L., 2014. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 29(10), p.104001.

Atkin, K., 2013. An introduction to the memristor. Physics Education, 48(3), pp.317-321.

Kvatinsky, S., Kolodny, A., Weiser, U. and Friedman, E., 2011. Memristor-based IMPLY logic design procedure. 2011 IEEE 29th International Conference on Computer Design (ICCD).

Shirinzadeh, S., Datta, K. and Drechsler, R., 2018. Logic Design Using Memristors: An Emerging Technology. 2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL).

Johnsen, G., Lütken, C., Martinsen, Ø. and Grimnes, S., 2011. Memristive model of electro-osmosis in skin. Physical Review E, 83(3).

Volkov, A., Tucket, C., Reedus, J., Volkova, M., Markin, V. and Chua, L., 2014. Memristors in plants. Plant Signaling & Behavior, 9(3), p.e28152.

Hadis, N., Manaf, A. and Herman, S., 2014. I-V characteristic effects of fluidic-based memristor for glucose concentration detection. 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014).

Volkov, A., Tucket, C., Reedus, J., Volkova, M., Markin, V. and Chua, L., 2014. Memristors in plants. Plant Signaling & Behavior, 9(3), p.e28152.

Gale, E., Adamatzky, A. and de Lacy Costello, B., 2014. Slime Mould Memristors. BioNanoScience, 5(1), pp.18

Volkov, A., Forde-Tuckett, V., Reedus, J., Mitchell, C., Volkova, M., Markin, V. and Chua, L., 2014. Memristors in the Venus flytrap. Plant Signaling & Behavior, 9(8), p.e29204.

Volkov, A., Nyasani, E., Blockmon, A. and Volkova, M., 2015. Memristors: Memory elements in potato tubers. Plant Signaling & Behavior, 10(10), p.e1071750.

Volkov, A., Nyasani, E., Tuckett, C., Greeman, E. and Markin, V., 2016. Electrophysiology of pumpkin seeds: Memristors in vivo. Plant Signaling & Behavior, 11(4), p.e1151600.

Chen, Y., Yu, H., Huang, C., Chung, W., Wu, S. and Su, Y., 2015. Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Scientific Reports, 5(1).

Goswami, R., Deb, A., Rathi, R. and Mahajan, P., 2021. Design and Analyses of a Food Protein Sensing System