Development of a protocol to produce chitosan from the larval exuvia of Tenebrio molitor

Main Article Content

Itnan Vargas-Venegas
Alejandro Medaglia-Mata
Laura Elena Chavarría-Pizarro

Abstract

Many of the polymers currently used in industry, research, and other fields are not easily biodegradable. These polymers most of the time are derived from petroleum, which has a significant environmental impact in their production. Chitosan serves as an alternative raw material with the potential of replacing various materials due to its properties. However, most of the industrial chitosan is extracted from waste generated by marine species processed for the food industry, making its extraction process non-scalable and dependent on the seasons when these species are caught. Additionally, industrial chitosan often has a high mineral content that is difficult to remove.


It is possible to obtain chitosan from insects in a more scalable and season-independent manner. In this study, a protocol was developed to obtain chitosan from the exuviae of larvae from the species Tenebrio molitor. The process involves chemical treatment to deproteinize and demineralize these waste materials to convert them into chitin. Subsequently, deacetylation is carried out to transform chitin into chitosan.


By processing the larval exuviae and making various modifications to the extraction protocol, an overall yield of 13.01% of the total mass of the raw material used was achieved. The transformation of larval exuviae into chitosan was confirmed through infrared spectroscopy (FTIR). Finally, the obtained product was confirmed to be chitosan through thermogravimetric analysis (TGA), and morphological differences were observed between the larval exuviae, the obtained chitosan, and commercial chitosan using scanning electron microscopy.

Article Details

How to Cite
Vargas-Venegas, I., Medaglia-Mata, A., & Chavarría-Pizarro, L. E. (2024). Development of a protocol to produce chitosan from the larval exuvia of Tenebrio molitor. Tecnología En Marcha Journal, 37(3). https://doi.org/10.18845/tm.v37i3.6724
Section
Artículo científico

References

Abioye, O. P., Abioye, A. A., Afolalu, S. A., & Ongbali, S. O. (2018). A review of biodegradable plastics in Nigeria. International Journal of Mechanical Engineering and Technology (IJMET), 9(10).

Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307-344.

RameshKumar, S., Shaiju, P., & O'Connor, K. E. (2020). Bio-based and biodegradable polymers: State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81.

Velásquez, C. L. (2006). Quitina y quitosano: materiales del pasado para el presente y el futuro. Avances en química, 1(2), 15-21.

Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in polymer science, 34(7), 641-678.

Mármol, Z., Páez, G., Rincón, M., Araujo, K., Aiello, C., Chandler, C., & Gutiérrez, E. (2011). Quitina y quitosano polímeros amigables. Una revisión de sus aplicaciones. Revista Tecnocientífica URU, 1, 53-58.

Sato, H., Mizutani, S. I., Tsuge, S., Ohtani, H., Aoi, K., Takasu, A., ... & Shoda, S. I. (1998). Determination of the degree of acetylation of chitin/chitosan by pyrolysis-gas chromatography in the presence of oxalic acid. Analytical Chemistry, 70(1), 7-12.

Parada, L., Crespín, G., Miranda, R., & Katime, I. (2004). Caracterización de quitosano por viscosimetría capilar y valoración potenciométrica. Revista iberoamericana de polímeros, 5(1), 1-16.

Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods–a review. Food Technology and Biotechnology, 51(1), 12-25.

Ramírez, C. (2020). Implicaciones del uso de larvas de Tenebrio molitor y Zophobas morio en la alimentación avícola.

Campana-Filho, S. P., De Britto, D., Curti, E., Abreu, F. R., Cardoso, M. B., Battisti, M. V., Sim, P. C., Goy, R. C., Signini, R., & Lavall, R. L. (2007). Extração, estruturas e propriedades de α- e β-quitina. Química Nova.

Delezuk, J. A. de M., Cardoso, M. B., Domard, A., & Campana-Filho, S. P. (2011). Ultrasound assisted deacetylation of beta-chitin: influence of processing parameters. Polymer International, 60, 903–909. https://doi.org/10.1002/pi.3037.

Castro León, C. A., Cervantes Mayagoitia, J. F., Schettino Bermúdez, B. S., & Nogueda Hernández, N. (2017). COMPARACIÓN DE CINCO DIETAS ALIMENTICIAS EN LA CRÍA DE Tenebrio molitor L. (COLEOPTERA: TENEBRIONIDAE). Entomología Mexicana, 4, 616–620.

Sarmiento, A. (2018). Establecimiento e implementación de un protocolo de cría de gusano de harina Tenebrio molitor (coleóptera: tenebrionidae), como apoyo al programa de conservación de la rana venenosa dorada Phyllobates terribilis (anura: dendrobatidae) en el bioparque Wakatá, parque Jaime Duque. Trabajo de grado. Universidad Nacional Abierta ya Distancia "UNAD". Colombia.

Kramer, K. J., Hopkins, T. L., & Schaefer, J. (1995). Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochemistry and Molecular Biology, 25(10), 1067–1080. doi:10.1016/0965-1748(95)00053-4.

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs, 13(3), 1133-1174.

Romero–Serrano, A., & Pereira, J. (2020). Estado del arte: Quitosano, un biomaterial versátil. Estado del Arte desde su obtención a sus múltiples aplicaciones. Revista INGENIERÍA UC, 27(2), 118-135.

Percot, A., Viton, C., & Domard, A. (2003). Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules, 4(1), 12–18.

Hahn, T., Tafi, E., Paul, A., Salvia, R., Falabella, P., & Zibek, S. (2020). Current state of chitin purification and chitosan production from insects. Journal of Chemical Technology & Biotechnology. doi:10.1002/jctb.6533.

Song, Y.-S., Kim, M.-W., Moon, C., Seo, D.-J., Han, Y. S., Jo, Y. H., … Jung, W.-J. (2018). Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, T. molitor. Entomological Research, 48(3), 227–233. doi:10.1111/1748-5967.12304.

Khor, E. (2014). Chitin: fulfilling a biomaterials promise. Elsevier.

da Silva Lucas, A. J., Oreste, E. Q., Costa, H. L. G., López, H. M., Saad, C. D. M., & Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chemistry, 343, 128550.

Marei, N. H., Abd El-Samie, E., Salah, T., Saad, G. R., & Elwahy, A. H. (2016). Isolation and characterization of chitosan from different local insects in Egypt. International journal of biological macromolecules, 82, 871-877.

Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 64(1), 98–103. doi:10.1016/j.carbpol.2005.10.032.

Kaya, M., Sofi, K., Sargin, I., & Mujtaba, M. (2016). Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydrate polymers, 145, 64-70.

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in polymer science, 31(7), 603-632.

Cadeza-Espinosa, M., Brambila-Paz, J., Chalita-Tovar, L. E., & González-Estrada, A. (2017). Evaluación financiera con la metodología de opciones reales de una inversión para producir quitosano con base en desperdicio de camarón. Agricultura, sociedad y desarrollo, 14(4), 533-545.

Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., & Heras, Á. (2009). Functional characterization of chitin and chitosan. Current chemical biology, 3(2), 203-230.

Zargar, V., Asghari, M., & Dashti, A. (2015). A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Reviews, 2(3), 204–226. doi:10.1002/cben.201400025.

Hernández Cocoletzi, H., Águila Almanza, E., Flores Agustin, O., Viveros Nava, E. L., & Ramos Cassellis, E. (2009). Obtención y caracterización de quitosano a partir de exoesqueletos de camarón. Superficies y vacío, 22(3), 57-60.

Most read articles by the same author(s)