Aplicaciones biotecnológicas de la degradación bioquímica de madera por acción de hongos Xilófagos: pudrición parda y blanca
Contenido principal del artículo
Resumen
Entre los factores bióticos con habilidad para degradar la madera se encuentran los hongos xilófagos. Estos organismos se clasifican según las preferencias de sustrato de crecimiento y sus patrones de descomposición de la madera; sobresaliendo aquellos causantes de las podredumbres blanca y parda o marrón. La principal diferencia entre ellos reside en su mecanismo de degradación, pues la podredumbre blanca se basa en la hidrólisis enzimática; mientras que la podredumbre marrón realiza una modificación de la lignina mediante la química de Fenton y especies reactivas de oxígeno, para llevar a cabo una posterior hidrólisis enzimática. Tanto la pudrición blanca como la parda poseen valiosas aplicaciones biotecnológicas en cuanto a biorremediación. Entre ellas sobresalen el manejo de desechos, degradación de químicos persistentes en el ambiente, remoción de metales tóxicos, entre otros.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
B. Goodell, J. E. Winandy, y J. J. Morrell, “Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions,” Coatings, vol. 10, no. 12, p. 1210, Dec. 2020, doi: 10.3390/coatings10121210.
G. Oliveira, F. de Oliveira, S. B.-P. S. Integrity, 2018, “Wood preservation for preventing biodeterioration of Cross Laminated Timber (CLT) panels assembled in tropical locations,” Elsevier, Recuperado: 1 de Octubre 2021. [en línea]. Disponible en: https://www.sciencedirect.com/science/article/pii/S2452321618301331
F. S. Krah, C. Bässler, C. Heibl, J. Soghigian, H. Schaefer, y D. S. Hibbett, “Evolutionary dynamics of host specialization in wood-decay fungi,” BMC Evolutionary Biology, vol. 18, no. 1, Agosto 2018, doi: 10.1186/S12862-018-1229-7.
M. Köhl, H. P. Ehrhart, M. Knauf, y P. R. Neupane, “A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals,” Ecological Indicators, vol. 111, p. 106057, Abril 2020, doi: 10.1016/J.ECOLIND.2019.106057.
T. S.- Forests, 2017, “Arthropod diversity and functional importance in old-growth forests of North America,” mdpi.com, doi: 10.3390/f8040097.
T. Mali, J. Kuuskeri, F. Shah, y T. K. Lundell, “Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes,” PLOS ONE, vol. 12, no. 9, p. e0185171, Septiembre 2017, doi: 10.1371/JOURNAL.PONE.0185171.
G. N. Presley, E. Panisko, S. O. Purvine, y J. S. Schilling, “Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi,” Applied and Environmental Microbiology, vol. 84, no. 16, pp. 159–177, Agosto 2018, doi: 10.1128/AEM.00159-18.
T. K. Lundell, M. R. Mäkelä, R. P. de Vries, y K. S. Hildén, “Genomics, Lifestyles and Future Prospects of Wood-Decay and Litter-Decomposing Basidiomycota,” Advances in Botanical Research, vol. 70, pp. 329–370, Enero 2014, doi: 10.1016/B978-0-12-397940-7.00011-2.
E. Rouches, I. Herpoël-Gimbert, J. P. Steyer, y H. Carrere, “Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review,” Renewable and Sustainable Energy Reviews. 2016, doi: 10.1016/j.rser.2015.12.317.
W. Montejo-Mayo, E. D.-R.- Phyton, 2021, “Inhibitory Effect of N, N-Dimethylhexadecylamine on the Growth of White-Rot Fungus Trametes versicolor (L.) en Wood,” search.proquest.com, Recuperado: 10 de Octubre 2021. [en línea]. Disponible en: https://search.proquest.com/openview/b03b050aca11b5c8dd14ea8d69189efc/1?pq-origsite=gscholarycbl=4585451
G. N. Presley, E. Panisko, S. O. Purvine, y J. S. Schilling, “Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi,” Applied and Environmental Microbiology, vol. 84, no. 16, pp. 159–177, Agosto 2018, doi: 10.1128/AEM.00159-18.
J. Zhang, G.N. Presley, K.E. Hammel, J-S. Ryu, J.R. Menke, M. Figueroa, D. Hu, G. Orr, y J.S. Schilling, “Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta,” Proceedings of the National Academy of Sciences, vol. 113, no. 39, pp. 10968–10973, Septiembre 2016, doi: 10.1073/PNAS.1608454113.
Y. Zhu, N. Plaza, Y. Kojima, M. Yoshida, J. Zhang, J. Jellison, S. Venkatesh Pingali, H. O’Neill y B. Goodell, “Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall,” Frontiers in Microbiology, vol. 0, p. 1389, Junio 2020, doi: 10.3389/FMICB.2020.01389.
K. Hildén y M. R. Mäkelä, “Role of Fungi in Wood Decay,” in Reference Module in Life Sciences, Elsevier, 2018. doi: https://doi.org/10.1016/B978-0-12-809633-8.12424-0.
G. N. Presley, J. Zhang, y J. S. Schilling, “A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi,” Fungal Genetics and Biology, vol. 112, pp. 64–70, Marzo 2018, doi: 10.1016/J.FGB.2016.08.004.
B. Wu, J. Gaskell, B.W. Held, C. Toapanta, T. Vuong, S. Ahrendt, A. Lipzen, J. Zhang, J.S. Schilling, E. Master, I.V. Grigoriev, R.A. Blanchette, D. Cullen y D.S. Hibbett, “Substrate-Specific Differential Gene Expression y RNA Editing in the Brown Rot Fungus Fomitopsis pinicola,” Applied and Environmental Microbiology, vol. 84, no. 16, Agosto 2018, doi: 10.1128/AEM.00991-18.
N. Nayan, A. S. M. Sonnenberg, W. H. Hendriks, y J. W. Cone, “Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed,” J. Appl. Microbiol., 2018, doi: 10.1111/jam.13894.
I. A. Vasiliadou, R. Molina, M. I. Pariente, K. C. Christoforidis, F. Martinez, y J. A. Melero, “Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi,” Chem. Eng. J., 2019, doi: 10.1016/j.cej.2018.11.035.
L. Reinprecht, Wood Deterioration, Protection and Maintenance. Oxford, UK: John Wiley y Sons, Ltd, 2016. doi: 10.1002/9781119106500.
Bari, E., Daniel, G., Yilgor, N., Kim, J. S., Tajick-Ghanbary, M. A., Singh, A. P., & Ribera, J. (2020). Comparison of the Decay Behavior of Two White-Rot Fungi in Relation to Wood Type and Exposure Conditions. Microorganisms, 8(12), 1931. https://doi.org/10.3390/microorganisms8121931
S. Rodríguez-Couto, “Industrial and environmental applications of white-rot fungi,” Mycosphere, vol. 8, no. 3, pp. 456–466, Mar. 2017, doi: 10.5943/mycosphere/8/3/7.
J. Piętka, A. Gendek, J. Malaťák, J. Velebil, y T. Moskalik, “Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.),” Biomass and Bioenergy, vol. 127, p. 105290, Aug. 2019, doi: 10.1016/j.biombioe.2019.105290.
G. Presley, J. S.-A., 2017, “Distinct growth and secretome strategies for two taxonomically divergent brown rot fungi,” Am Soc Microbiol, vol. 83, no. 7, pp. 2987–3003, Abril 2017, doi: 10.1128/AEM.02987-16.
L. Hossain, S. K. Sarker, y M. S. Khan, “Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh,” Environ. Dev., vol. 26, pp. 23–33, Jun. 2018, doi: 10.1016/J.ENVDEV.2018.03.005.
R. K. Pandey, S. Tewari, y L. Tewari, “Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes,” Ecotoxicol. Environ. Saf., vol. 158, pp. 50–58, Aug. 2018, doi: 10.1016/J.ECOENV.2018.04.003.
R. G. Saratale, G. D. Saratale, J. S. Chang, y S. P. Govindwar, “Bacterial decolorization and degradation of azo dyes: A review,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 1, pp. 138–157, Jan. 2011, doi: 10.1016/J.JTICE.2010.06.006.F.
Mcyotto, Q. Wei, D. K. Macharia, M. Huang, C. Shen, y C. W. K. Chow, “Effect of dye structure on color removal efficiency by coagulation,” Chem. Eng. J., vol. 405, p. 126674, Feb. 2021, doi: 10.1016/J.CEJ.2020.126674.
S. G. Rudakiya, Darshan, Archana, Tripathi y A. Gupte, “Fungal Bioremediation: A Step Towards Cleaner Environment”. Advancing Frontiers in Mycology y Mycotechnology, 229–249 | 10.1007/978-981-13-9349-5_9. https://sci-hub.se/https://doi.org/10.1007/978-981-13-9349-5_9
W. Przystaś, E. Zabłocka-Godlewska, y E. Grabińska-Sota, “Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports,” Brazilian J. Microbiol., vol. 49, no. 2, pp. 285–295, Apr. 2018, doi: 10.1016/J.BJM.2017.06.010.
R. Ilamathi, A. Merline Sheela, y N. Nagendra Gandhi, “Comparative evaluation of Pseudomonas species in single chamber microbial fuel cell with manganese coated cathode for reactive azo dye removal,” Int. Biodeterior. Biodegradation, vol. 144, p. 104744, Oct. 2019, doi: 10.1016/J.IBIOD.2019.104744.
C. Nie, J. Dong, P. Sun, C. Yan, H. Wu, y B. Wang, “An efficient strategy for full mineralization of an azo dye in wastewater: a synergistic combination of solar thermo- and electrochemistry plus photocatalysis,” RSC Adv., vol. 7, no. 58, pp. 36246–36255, Jul. 2017, doi: 10.1039/C7RA05797K.
H. Zhang, H. Yang, K. Xie, A. Hou, y A. Gao, “Novel reactive dyes with intramolecular color matching combination containing different chromophores,” Dye. Pigment., vol. 159, pp. 576–583, Dec. 2018, doi: 10.1016/J.DYEPIG.2018.07.031.
M. Gahlout, • Darshan, M. Rudakiya, S. Gupte, • Akshaya Gupte, y A. Gupte, “Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye,” Int. Nano Lett., vol. 7, pp. 195–208, 2017, doi: 10.1007/s40089-017-0215-1.
S. Thakur y A. Gupte, “Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes,” Ann. Microbiol., vol. 65, no. 1, pp. 185–196, 2015, doi: 10.1007/s13213-014-0849-4.
H. Khatoon, J. P. N. Rai, y A. Jillani, “Role of fungi in bioremediation of contaminated soil,” en Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology, Academic Press, 2021, pp. 121–156. doi: 10.1016/B978-0-12-821925-6.00007-1.
L. Rani, K. Thapa, N. Kanojia y N, Sharma, “An extensive review on the consequences of chemical pesticides on human health and environment,” Journal of Cleaner Production, vol. 283, p. 124657, 2021, doi: 10.1016/J.JCLEPRO.2020.124657.
Y. Mehmood, M. Arshad, N. Mahmood, H. Kächele, y R. Kong, “Occupational hazards, health costs, and pesticide handling practices among vegetable growers in Pakistan,” Environmental Research, vol. 200, pp. 111–340, 2021, doi: 10.1016/J.ENVRES.2021.111340.
R. Zhuo y F. Fan, “A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants,” Science of The Total Environment, vol. 778, Jul. 2021, doi: 10.1016/J.SCITOTENV.2021.146132.
E. Beltrán-Flores, M. Sarrà, y P. Blánquez, “Pesticide bioremediation by Trametes versicolor: Application in a fixed-bed reactor, sorption contribution and bioregeneration,” Science of The Total Environment, vol. 794, p. 148386, 2021, doi: 10.1016/J.SCITOTENV.2021.148386.
E. Beltrán-Flores, J. Torán, G. Caminal, P. Blánquez, y M. Sarrà, “The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors,” Science of The Total Environment, vol. 728, p. 138414, Ago. 2020, doi: 10.1016/J.SCITOTENV.2020.138414.
A. Chen, W. Li, X. Zhang, C. Shang, S. Luo, R. Cao, y D. Jin, “Biodegradation and detoxification of neonicotinoid insecticide thiamethoxam by white-rot fungus Phanerochaete chrysosporium,” Journal of Hazardous Materials, vol. 417, p. 126017, Set. 2021, doi: 10.1016/J.JHAZMAT.2021.126017.
Z. Li, X. Wang, Z. Ni, J. Bao, y H. Zhang, “In-situ Remediation of Carbofuran-Contaminated Soil by Immobilized White-Rot Fungi,” Polish Journal of Environmental Studies, vol. 29, no. 2, pp. 1237–1243, Ene. 2020, doi: 10.15244/PJOES/102671.
J. M. Wolfand, G. H. LeFevre, y R. G. Luthy, “Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor,” Environmental Science: Processes y Impacts, vol. 18, no. 10, pp. 1256–1265, Oct. 2016, doi: 10.1039/C6EM00344C.
P. D. Chaparro Bustos y D. Gómez Perdomo, “Evaluación de la inmovilización de Trametes versicolor DSM 3086 en estropajo común (Luffa cylindrica),” Universidad El Bosque, Bogotá, Colombia, 2018.
L. Capolupo y V. Faraco, “Green methods of lignocellulose pretreatment for biorefinery development,” Applied Microbiology and Biotechnology, vol. 100, no. 22, pp. 9451–9467, Oct. 2016, doi: 10.1007/S00253-016-7884-Y.
G. Zhen, X. Lu, H. Kato, Y. Zhao, y Y. Y. Li, “Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives,” Renewable and Sustainable Energy Reviews, vol. 69, pp. 559–577, Mar. 2017, doi: 10.1016/J.RSER.2016.11.187.
U. Schimpf y R. Schulz, “Industrial by-products from white-rot fungi production. Part II: Application in anaerobic digestion for enzymatic treatment of hay and straw,” Process Biochemistry, vol. 76, pp. 142–154, Ene. 2019, doi: 10.1016/J.PROCBIO.2018.10.006.
W. B. Huang, H. R. Yuan, y X. J. Li, “Multi-perspective analyses of rice straw modification by Pleurotus ostreatus and effects on biomethane production,” Bioresource Technology, vol. 296, p. 122365, Ene. 2020, doi: 10.1016/J.BIORTECH.2019.122365.
M. Alexandropoulou, G. Antonopoulou, E. Fragkou, I. Ntaikou, y G. Lyberatos, “Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production,” Journal of Environmental Management, vol. 203, pp. 704–713, Dic. 2017, doi: 10.1016/J.JENVMAN.2016.04.006.
T. Singh y A. P. Singh, “White and Brown Rot Fungi as Decomposers of Lignocellulosic Materials and Their Role in Waste and Pollution Control,” en Fungal Applications in Sustainable Environmental Biotechnology, 1ra ed., Springer, 2016, pp. 233–247. doi: 10.1007/978-3-319-42852-9_9.
A. Akgul, A. Akgul, J. D. Tang, y S. V Diehl, “Gene Expression Analysis Of Wood Decay Fungus Fibroporia Radiculosa Grown In Acq-Treated Wood,” Wood and Fiber Science, vol. 50, no. 2, pp. 1–12, 2018.
K. M. Ohno, A. B. Bishell, y G. R. Stanosz, “Gene Expression Analysis of Three Putative Copper-Transporting ATPases in Copper-Tolerant Fibroporia radiculosa,” Frontiers in Microbiology, Dec. 2020, doi: 10.3389/FMICB.2020.586940.
A. Akgul y A. Akgul, “Mycoremediation of Copper: Exploring the Metal Tolerance of Brown Rot Fungi,” BioResources, vol. 13, no. 3, pp. 7155–7171, 2018.
C. Lenz, E. Melcher, R. Möller, y S. Lautner, “Research Papers Microscopic Investigations Concerning In Situ Oxalate Formation By The Brown-Rot Fungus Poria Placenta,” Drewno, vol. 60, no. 199, 2017, doi: 10.12841/wood.1644-3985.215.01.
D. Xing, S. Magdouli, J. Zhang, y A. Koubaa, “Microbial remediation for the removal of inorganic contaminants from treated wood: Recent trends and challenges,” Chemosphere, vol. 258, p. 127429, Nov. 2020, doi: 10.1016/J.CHEMOSPHERE.2020.127429.
L. G. da Costa, V. F. Brocco, J. B. Paes, G. T. Kirker, y A. B. Bishell, “Biological and chemical remediation of CCA treated eucalypt poles after 30 years in service,” Chemosphere, vol. 286, p. 131629, Ene. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.131629.
T. Hattori, H. Hisamori, S. Suzuki, T. Umezawa, T. Yoshimura, y H. Sakai, “Rapid copper transfer and precipitation by wood-rotting fungi can effect copper removal from copper sulfate-treated wood blocks during solid-state fungal treatment,” International Biodeterioration y Biodegradation, vol. 97, pp. 195–201, Ene. 2015, doi: 10.1016/J.IBIOD.2014.11.011.
A. S. Purnomo, V. T. Mauliddawati, M. Khoirudin, A. F. Yonda, R. Nawfa, y S. R. Putra, “Bio-decolorization and novel bio-transformation of methyl orange by brown-rot fungi,” International Journal of Environmental Science and Technology, vol. 16, no. 11, pp. 7555–7564, Jul. 2019, doi: 10.1007/S13762-019-02484-3.
A. Sariwati, A. S. Purnomo, y I. Kamei, “Abilities of Co-cultures of Brown-Rot Fungus Fomitopsis pinicola and Bacillus subtilis on Biodegradation of DDT,” Current Microbiology 2017 74:9, vol. 74, no. 9, pp. 1068–1075, Jun. 2017, doi: 10.1007/S00284-017-1286-Y.
H. D. Rizqi y A. S. Purnomo, “The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye,” World Journal of Microbiology and Biotechnology, vol. 33, no. 5, pp. 1–9, Abr. 2017, doi: 10.1007/S11274-017-2256-Z.
A. S. Purnomo, F. D. Rahmadini, R. Nawfa, y S. R. Putra, “The effect of addition of bacterium Pseudomonas aeruginosa on biodegradation of methyl orange dye by brown-rot fungus Gloeophyllum trabeum,” IOP Conference Series: Materials Science and Engineering, vol. 980, 2020, doi: 10.1088/1757-899X/980/1/012074.
K. S. Becerra Correa, “Análisis cualitativo de literatura sobre las técnicas de biorremediación de suelos por hidrocarburos y contaminantes orgánicos persistentes empleando el hongo Trichoderma sp.” Universidad Antonio Nariño, Bogotá, Colombia, 2020.
I. Rahim, Suherman, Hakza, A. Nasruddin, “The ability of rot fungi from cocoa plant in producing lignocellulosic enzymes.” In IOP Conference Series: Earth and Environmental Science (Vol. 270, No. 1, p. 012037) IOP Publishing, 2019.
L. F. Ocampo Díaz, A.S.R. Pineda, P.A. Acevedo-Pabón e I. Cabeza Rojas, “Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.” Recuperado el 16 de noviembre del 2021. [en línea]. Disponible en: shorturl.at/euBUW
J.A. Solórzano, J. Gilles, O. Bravo, C. Vargas, Y. Gomez-Bonilla, G.V. Bingham y D.B. Taylor, “Biology and Trapping of Stable Flies (Diptera: Muscidae) Developing in Pineapple Residues (Ananas comosus) in Costa Rica,” Journal of Insect Science, vol. 15, no. 1, p. 145, 2015, doi: 10.1093/jisesa/iev127.