Characterization of lignocellulosic biomasses and their thermal processing: Status and opportunities at the Instituto Tecnológico de Costa Rica

Main Article Content

Allen Puente-Urbina

Abstract

Lignocellulosic biomasses are feedstocks with low carbon footprints, useful for the production of energy, materials and chemicals, which can come from different sources, including agro-industrial activities and fast-growing plantations. In Costa Rica, despite the fact that part of the usable biomasses is already in use, there is still potential. Some of the ways in which they can be used and provide a wide range of products is through thermal processing via combustion to obtain energy, torrefaction or carbonization to obtain solid fuels, pyrolysis to obtain (predominantly) liquid products or gasification to obtain gases that can be used as fuels or further processed to obtain high-value chemicals. To achieve a practical implementation of these processes, it is necessary to adequately characterize the starting materials, as well as to know in detail their behavior under specific processing conditions. For both, the Instituto Tecnológico de Costa Rica (ITCR) has adequate instrumental capacity and expertise. Available tools such as physicochemical characterization methods using traditional chemical analyses, instrumental analyses (using spectroscopic, microscopic, diffractometric and thermal methods, among others) as well as capabilities in torrefaction, carbonization, pyrolysis, gasification and computational simulations, together with well-trained staff with different backgrounds, make this institution a suitable place to study and promote technologies that may be of general interest. In this work, successful experiences and opportunities at the ITCR related to the characterization of lignocellulosic biomasses and their thermal processing are analyzed.

Article Details

How to Cite
Puente-Urbina, A. (2022). Characterization of lignocellulosic biomasses and their thermal processing: Status and opportunities at the Instituto Tecnológico de Costa Rica. Tecnología En Marcha Journal, 35(7), Pág. 119–128. https://doi.org/10.18845/tm.v35i7.6343
Section
Artículo científico

References

BP, “Statistical Review of World Energy 2020,” BP, 2020.

IPCC, “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, 2014.

IEA, “World Energy Outlook 2020,” IEA, 2020.

SEPSE, “Balance Energético Nacional,” Secretaría de Planificación del Subsector Energía (SEPSE), 2012-2019.

UNFCCC, United Nations Framework Convention on Climate Change, 2005.

P. Basu, Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press, 2010.

D. Arias-Aguilar, “Dendroenergía como un nuevo vector energético: hacia una economía baja en carbono,” Revista Energía, vol. 68-2018, pp. 18-31, 2018.

R. D. Silva-Martínez, A. Sanches-Pereira, W. Ortiz, M. F. Gómez Galindo, and S. T. Coelho, “The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities,” Renewable Energy, vol. 156, pp. 509-525, 2020.

P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresource Technology, vol. 83, no. 1, pp. 37-46, 2002.

L. R. Chacón, O. Coto, and O. M. Flores, “Actualización de la encuesta de biomasa como insumo para su incorporación en la matriz energética de Costa Rica,” EMA Energía Medio Ambiente y Desarrollo S.A., 2018.

MICITT, “Estrategia Nacional de Bioeconomía Costa Rica 2020-2030,” Ministerio de Ciencia, Tecnología y Telecomunicaciones (MICITT), 2020.

SEPSE, “VII Plan Nacional de Energía 2015-2030,” Secretaría de Planificación del Subsector Energía (SEPSE), 2020.

S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, “An overview of the chemical composition of biomass,” Fuel, vol. 89, no. 5, pp. 913-933, 2010.

W. De Jong and J. R. Van Ommen, Eds. Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. John Wiley & Sons, 2014.

R. Brown, Ed. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. John Wiley & Sons, 2019.

J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Current Opinion in Biotechnology, vol. 56, pp. 240-249, 2019.

R. P. Overend, T. A. Milne, and L. K. Mudge, Eds. Fundamentals of Thermochemical Biomass Conversion. Elsevier Applied Science Publishers, 1985.

D. L. Karlen, Ed. Cellulosic Energy Cropping Systems. John Wiley & Sons, 2014.

J. B. Holm-Nielsen and E. A. Ehimen, Eds. Biomass Supply Chains for Bioenergy and Biorefining. Elsevier and Woodhead Publishing, 2016.

S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, “An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification,” Fuel, vol. 105, pp. 40-76, 2013.

J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 309-322, 2017.

J. Yan et al., “Characterizing Variability in Lignocellulosic Biomass: A Review,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 22, pp. 8059-8085, 2020.

S. Vaz Jr, Ed. Analytical Techniques and Methods for Biomass. Springer, 2016.

D. Harris and S. DeBolt, “Relative Crystallinity of Plant Biomass: Studies on Assembly, Adaptation and Acclimation,” PLOS ONE, vol. 3, no. 8, p. e2897, 2008.

F. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, “Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review,” Applied Energy, vol. 104, pp. 801-809, 2013.

R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Biomass proximate analysis using thermogravimetry,” Bioresource Technology, vol. 139, pp. 1-4, 2013.

J. F. Saldarriaga, R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao, “Fast characterization of biomass fuels by thermogravimetric analysis (TGA),” Fuel, vol. 140, pp. 744-751, 2015.

A. Anca-Couce et al., “Biomass pyrolysis TGA assessment with an international round robin,” Fuel, vol. 276, p. 118002, 2020.

A. Puente-Urbina, J. P. Morales-Aymerich, Y. S. Kim, and J. F. Mata-Segreda, “Drying kinetics and assessment of relative energy cost for drying of woody biomasses,” International Journal of Renevable Energy & Biofuels, vol. 2016, p. 701233, 2016.

O. O. Olatunji, S. A. Akinlabi, M. P. Mashinini, S. O. Fatoba, and O. O. Ajayi, “Thermo-gravimetric characterization of biomass properties: A review,” IOP Conference Series: Materials Science and Engineering, vol. 433, p. 012175, 2018.

H. C. Ong, W.-H. Chen, Y. Singh, Y. Y. Gan, C.-Y. Chen, and P. L. Show, “A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach,” Energy Conversion and Management, vol. 209, p. 112634, 2020.

M. Radojević, B. Janković, D. Stojiljković, V. Jovanović, I. Čeković, and N. Manić, “Improved TGA-MS measurements for evolved gas analysis (EGA) during pyrolysis process of various biomass feedstocks. Syngas energy balance determination,” Thermochimica Acta, vol. 699, p. 178912, 2021.

A. Demirbas, “Combustion of Biomass,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 29, no. 6, pp. 549-561, 2007.

P. McKendry, “Energy production from biomass (part 3): gasification technologies,” Bioresource Technology, vol. 83, no. 1, pp. 55-63, 2002.

M. Verma, S. Godbout, S. K. Brar, O. Solomatnikova, S. P. Lemay, and J. P. Larouche, “Biofuels Production from Biomass by Thermochemical Conversion Technologies,” International Journal of Chemical Engineering, vol. 2012, p. 542426, 2012.

A. Demirbas and G. Arin, “An Overview of Biomass Pyrolysis,” Energy Sources, vol. 24, no. 5, pp. 471-482, 2002.

R. Moya and C. Tenorio, “Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica,” Biomass and Bioenergy, vol. 56, pp. 14-21, 2013.

C. Tenorio and R. Moya, “Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica,” Thermochimica Acta, vol. 563, pp. 12-21, 2013.

A. Puente-Urbina, “Determination of useful parameters to decide the suitability of a biomass to be used as raw material for thermochemical processes,” presented at the American Chemical Society National Meeting & Exposition, Denver, 2015.

R. Moya, A. Rodriguez-Zuniga, and A. Puente-Urbina, “Thermogravimetric and devolatilisation analysis for five plantation species: Effect of extractives, ash compositions, chemical compositions and energy parameters,” Thermochimica Acta, vol. 647, pp. 36-46, 2017.

A. Puente-Urbina, R. Moya, J. Gaitan-Alvarez, and A. Rodriguez-Zuniga, “Torrefaction analysis of woody biomasses from fast-growing plantations of Costa Rica,” presented at the European Biomass Conference & Exhibition, Stockholm, 2017.

R. Moya, A. Rodriguez-Zuniga, A. Puente-Urbina, and J. Gaitan-Alvarez, “Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica,” Energy, vol. 149, pp. 1-10, 2018.

J. Gaitan-Alvarez, R. Moya, A. Puente-Urbina, and A. Rodriguez-Zuniga, “Thermogravimetric, devolatilization rate, and differential scanning calorimetry analyses of biomass of tropical plantation species of Costa Rica torrefied at different temperatures and times,” Energies, vol. 11, no. 4, p. 26, 2018, Art. no. 696.

J. Gaitan-Alvarez, R. Moya, A. Rodriguez-Zuniga, and A. Puente-Urbina, “Characterization of torrefied biomass of five reforestation species (Cupressus lusitanica, Dipteryx panamensis, Gmelina arborea, Tectona grandis, and Vochysia ferruginea) in Costa Rica,” Bioresources, vol. 12, no. 4, pp. 7566-7589, 2017.

J. Gaitan-Alvarez, R. Moya, A. Puente-Urbina, and A. Rodriguez-Zuniga, “Physical and compression properties of pellets manufactured with the biomass of five woody tropical species of Costa Rica torrefied at different temperatures and times,” Energies, vol. 10, no. 8, p. 17, 2017, Art. no. 1205.

J. Quesada-Kimzey, “Carbonize it? Simple test method to see whether carbonization is a good valorization choice for a material,” presented at the American Chemical Society National Meeting & Exposition, San Diego, 2016.

J. F. Quesada-Kimzey, P. Zuniga, and T. Gmelch, “Continuous laboratory scale hydrothermal reactor for biomassic materials with high water contents,” presented at the American Chemical Society National Meeting & Exposition, San Diego, 2016.

A. M. Brenes, M. Gudino, J. Castro, J. Rodriguez, and A. Puente-Urbina, “Determination of suitable parameters to produce activated carbons from Costa Rican residual woody biomasses,” presented at the American Chemical Society National Meeting & Exposition, San Diego, 2016.

C. Torres, M. Chaves, L. Urvina, and R. Moya, “Evaluación de la incidencia de pellets y astillas de madera en el desempeño de un gasificador tipo “downdraft”,” Revista Forestal Mesoamericana Kurú, vol. 15, pp. 25-36, 2018.

J. A. Castillo-Benavides, G. Richmond-Navarro, F. Rojas-Pérez, and E. Zamora-Picado, “Revisión de los sistemas de gasificación de biomasa para la generación de energía en Costa Rica de 1982 a 2014,” Revista Tecnología en Marcha, vol. 31, no. 4, pp. 3-14, 2018.

A. Caballero-Chavarria et al., “Simulación de gasificación de biomasa enriquecida con hidrocarburos,” Tecnologia En Marcha, vol. 32, no. 4, pp. 60-68, 2019.

Most read articles by the same author(s)