Evaluation of energy production for PV microinverter system installed at the University Rectory Building at Tecnológico de Costa Rica
Main Article Content
Abstract
The implementation of microinverters in photovoltaic systems has the advantage of independently harnessing the power at the point of the maximum power of each photovoltaic panel, regardless of the conditions of orientation, shadows, and degradation that each of them may present. This stands for a significant advantage since it avoids power imbalance problems that can occur in a string of panels. This article presents an analysis of the energy production for the microinverter system installed in the rooftop of the rectory building of the Tecnológico de Costa Rica. The grid-connected system has a nominal d.c. power of 8.3 kWp, using 31 Canadian Solar model CS6P-270 panels, each connected to an Enphase model M215 microinverter. The system has been in operation since March 2017, and for 46 production months, the total generation was 48.892 MWh with an average performance of 1.570 MWh. In this evaluation, it was possible to verify that the solar panels located towards the south generated 3.6% more electricity than the panels located towards the north, which represents an additional generation of 11.4 days per year with respect to the panels oriented towards the north.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Harb, S., Kedia, M., Zhang, H., & Balog, R. S. (2013, June). Microinverter and string inverter grid-connected photovoltaic system—A comprehensive study. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (pp. 2885-2890). IEEE.
Alluhaybi, K., Batarseh, I., & Hu, H. (2019). Comprehensive review and comparison of single-phase grid-tied photovoltaic microinverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 1310-1329.
Çelik, Ö., Tan, A., Inci, M., & Teke, A. (2020). Improvement of energy harvesting capability in grid-connected photovoltaic micro-inverters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-25.
C. Deline, J. Meydbray, M. Donovan, and J. Forrest, “Photovoltaic Shading Testbed for Module-Level Power Electronics,” National Renewable Energy Laboratory and PV Evolution Labs, Technical Report, May 2012.
A. Bidram, A. Davoudi, and R. S. Balog, “Control and Circuit Techniques to Mitigate Partial Shading Effects in Photovoltaic Arrays,” IEEE Journal of Photovoltaics, vol. 2, pp. 532-546, 2012.
Nfaoui, M., & El-Hami, K. (2018). Extracting the maximum energy from solar panels. Energy Reports, 4, 536-545.
Yuan, J., Blaabjerg, F., Yang, Y., Sangwongwanich, A., & Shen, Y. (2019, April). An overview of photovoltaic microinverters: Topology, efficiency, and reliability. In 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) (pp. 1-6). IEEE.
Çelik, Ö., Teke, A., & Tan, A. (2018). Overview of micro-inverters as a challenging technology in photovoltaic applications. Renewable and Sustainable Energy Reviews, 82, 3191-3206.
C. Meza-Benavides, H.Sánchez-Ortiz, F. Monge, J. Morera & A. Méndez, “Estrategia para la implementación de iniciativas sostenibles en ciudades universitarias ejemplificada con el Complejo Solar del TEC de Costa Rica”, En C. Zuñiga-Cañon & L. Hernández-Callejo (Eds.) Ciudades Inteligentes Totalmente Integrales, Eficientes y Sostenibles. Octubre, 2019, 812-828.
Solargis, PVplanner (2018). [Computer Software]. Bratislava, Slovakia. URL: https://solargis.info/pvplanner/#tl=Google:hybrid&bm=satellite&loc=9.858567,-83.911875&c=9.857379,-83.912262&z=17
Solargis. (2016). Solargis Solar Resource Database: Description and Accuracy. Bratislava, Slovakia. URL: https://solargis2-web-assets.s3.eu-west-1.amazonaws.com/public/Uploads/279e8bb216/Solargis-database-description-and-accuracy.pdf
SINAC. (2016). Parque Nacional Tapantí Macizo de la Muerte. URL: http://www.sinac.go.cr/ES/ac/accvc/pntpmm/Paginas/default.aspx
Jordan, D. C., & Kurtz, S. R. (2013). Photovoltaic degradation rates—an analytical review. Progress in photovoltaics: Research and Applications, 21(1), 12-29.
Minitab 18.1 Statistical Software (2017). [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com )