Review article. Usnic acid: potential alternative against current bacterial resistance

Main Article Content

Sharon Juliet Avila-Zamora
Yessica Dayanna Pinzón-Pérez
Jovanna Acero-Godoy

Abstract

Usnic acid (AU) is a lichen substance, which is part of the secondary metabolites of lichens, which are organisms that generate a symbiosis between a photosynthetic organism and a mycobiont, such as Usnea sp, produced by different metabolic pathways, such as this is the case of the AU substance resulting from the acetate-malonate pathway. On the other hand, the extraction of UA is carried out by means of organic solvents, maceration and for its identification, high efficiency liquid chromatography (HPCL) is carried out. Lichen substances have antimycotic, antiviral, cytotoxic, and antimicrobial characteristics, the latter has been studied against pathogenic bacteria such as Staphylococcus sp., Escherichia coli, Streptoccocus sp., among others, due to antiquity of hospital prevalence, due to the fact that they have developed resistance against used antibiotics, concern; Therefore, new alternatives are being sought that allow us to continue fighting these pathogens. The mechanisms of action used by UA have been investigated, among which are the ability to inhibit the synthesis of bacterial primers, preventing their replication. has confirmed its in vitro use against multiresistant bacteria such as Staphylococcus aureus MRSA, showing that UA has a minimum inhibitory concentration (MIC) of 25–50 μg/mL [1]. The UA inhibition mechanism can lead to bacterial growth arrest; through mechanisms such as replication inhibition (DNA-RNA) in addition to the inhibition of bacterial resistance genes, thus shielding this possible antibiotic against resistant bacterial strains currently found.

Article Details

How to Cite
Avila-Zamora, S. J., Pinzón-Pérez, Y. D., & Acero-Godoy, J. . (2023). Review article. Usnic acid: potential alternative against current bacterial resistance. Tecnología En Marcha Journal, 36(3), Pág. 145–157. https://doi.org/10.18845/tm.v36i3.6183
Section
Artículo científico

References

V. K. Gupta et al., «Membrane-damaging potential of natural L-(−)-usnic acid in Staphylococcus aureus», Eur. J. Clin. Microbiol. Infect. Dis., vol. 31, n.o 12, pp. 3375-3383, dic. 2012, doi: 10.1007/s10096-012-1706-7.

R. Lücking, B. P. Hodkinson, y S. D. Leavitt, «The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – Approaching one thousand genera», The Bryologist, vol. 119, n.o 4, Art. n.o 4, ene. 2017, doi: 10.1639/0007-2745-119.4.361.

M. Thakur y H. Chander, «Potential of Lichens: A Review of Bioactive Compounds with Biological Activities», p. 10, 2021.

S. Yousuf, M. I. Choudhary, y Atta-ur-Rahman, «Lichens», en Studies in Natural Products Chemistry, vol. 43, Elsevier, 2014, pp. 223-259. doi: 10.1016/B978-0-444-63430-6.00007-2.

W. A. Elkhateeb, G. M. Daba, D. Sheir, T.-D. Nguyen, K. K. Hapuarachchi, y P. W. Thomas, «Mysterious World of Lichens: Highlights on Their History, Applications, and Pharmaceutical Potentials», Nat. Prod. J., vol. 10, ene. 2020, doi: 10.2174/2210315510666200128123237.

R. Sargsyan, A. Gasparyan, G. Tadevosyan, y H. Panosyan, «Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia», AMB Express, vol. 11, n.o 1, p. 110, dic. 2021, doi: 10.1186/s13568-021-01271-z.

Devashree, A. Pandey, y A. Dikshit, «Lichens: Fungal symbionts and their secondary metabolites», en New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 2021, pp. 107-115. doi: 10.1016/B978-0-12-821005-5.00007-7.

T. Khare et al., «Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens», Front. Pharmacol., vol. 12, p. 720726, jul. 2021, doi: 10.3389/fphar.2021.720726.

D. G. J. Larsson y C.-F. Flach, «Antibiotic resistance in the environment», Nat. Rev. Microbiol., nov. 2021, doi: 10.1038/s41579-021-00649-x.

D. Armaleo et al., «The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata», BMC Genomics, vol. 20, n.o 1, Art. n.o 1, dic. 2019, doi: 10.1186/s12864-019-5629-x.

M. Grimm, M. Grube, U. Schiefelbein, D. Zühlke, J. Bernhardt, y K. Riedel, «The Lichens’ Microbiota, Still a Mystery?», Front. Microbiol., vol. 12, p. 623839, mar. 2021, doi: 10.3389/fmicb.2021.623839.

B. Büdel y C. Scheidegger, «Thallus morphology and anatomy», en Lichen Biology, 2.a ed., T. H. Nash, Ed. Cambridge: Cambridge University Press, 2008, pp. 40-68. doi: 10.1017/CBO9780511790478.005.

B. Ranković y M. Kosanić, «Lichens as a Potential Source of Bioactive Secondary Metabolites», en Lichen Secondary Metabolites, B. Ranković, Ed. Cham: Springer International Publishing, 2019, pp. 1-29. doi: 10.1007/978-3-030-16814-8_1.

G. Amo de Paz, A. R. Burgaz, y Editorial Complutense, Líquenes epifíticos del Hayedo de Montejo de la Sierra (Madrid). Madrid: Editorial Complutense, 2009. Accedido: 1 de julio de 2021. [En línea]. Disponible en: http://www.ucm.es/BUCM/editorialucm/36925.php

D. I. V. Flores, «Los líquenes, una alternativa para el control de fitopatógenos», p. 8, 2014.

A. Galanty, P. Paśko, y I. Podolak, «Enantioselective activity of usnic acid: a comprehensive review and future perspectives», Phytochem. Rev., vol. 18, n.o 2, pp. 527-548, abr. 2019, doi: 10.1007/s11101-019-09605-3.

I. M. Walton, J. M. Cox, C. A. Benson, D. (Dan) G. Patel, Y.-S. Chen, y J. B. Benedict, «The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks», New J. Chem., vol. 40, n.o 1, pp. 101-106, 2016, doi: 10.1039/C5NJ01718A.

I. Francolini, A. Piozzi, y G. Donelli, «Usnic Acid: Potential Role in Management of Wound Infections», en Advances in Microbiology, Infectious Diseases and Public Health, vol. 1214, G. Donelli, Ed. Cham: Springer International Publishing, 2018, pp. 31-41. doi: 10.1007/5584_2018_260.

A. Zugic, V. Tadic, y S. Savic, «Nano- and Microcarriers as Drug Delivery Systems for Usnic Acid: Review of Literature», Pharmaceutics, vol. 12, n.o 2, p. 156, feb. 2020, doi: 10.3390/pharmaceutics12020156.

M. J. Calcott, D. F. Ackerley, A. Knight, R. A. Keyzers, y J. G. Owen, «Secondary metabolism in the lichen symbiosis», Chem. Soc. Rev., vol. 47, n.o 5, Art. n.o 5, 2018, doi: 10.1039/C7CS00431A.

M. Goga, J. Elečko, M. Marcinčinová, D. Ručová, M. Bačkorová, y M. Bačkor, «Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential», en Bioactive Molecules in Food, J.-M. Mérillon y K. G. Ramawat, Eds. Cham: Springer International Publishing, 2018, pp. 1-36. doi: 10.1007/978-3-319-76887-8_57-1.

Devashree, A. Pandey, y A. Dikshit, «Lichens: Fungal symbionts and their secondary metabolites», en New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 2021, pp. 107-115. doi: 10.1016/B978-0-12-821005-5.00007-7.

Y. Zhao, M. Wang, y B. Xu, «A comprehensive review on secondary metabolites and health-promoting effects of edible lichen», J. Funct. Foods, vol. 80, p. 104283, may 2021, doi: 10.1016/j.jff.2020.104283.

D. C. S. Macedo et al., «Usnic acid: from an ancient lichen derivative to promising biological and nanotechnology applications», Phytochem. Rev., vol. 20, n.o 3, pp. 609-630, jun. 2021, doi: 10.1007/s11101-020-09717-1.

S. Şahin, S. Oran, P. Şahintürk, C. Demir, y Ş. Öztürk, «Ramalina Lichens and Their Major Metabolites as Possible Natural Antioxidant and Antimicrobial Agents», J. Food Biochem., vol. 39, n.o 4, pp. 471-477, ago. 2015, doi: 10.1111/jfbc.12142.

S. S. Charry, «IDENTIFICACION DE LOS METABOLITOS SECUNDARIOS DE LÍQUENES DEL GÉNERO Sticta PROCEDENTES DEL PÁRAMO DE ANAIME (ANAIME- TOLIMA)», p. 94, 2019.

P. S. A. I. Shiromi, R. P. Hewawasam, R. G. U. Jayalal, H. Rathnayake, W. M. D. G. B. Wijayaratne, y D. Wanniarachchi, «Chemical Composition and Antimicrobial Activity of Two Sri Lankan Lichens, Parmotrema rampoddense, and Parmotrema tinctorum against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus», Evid. Based Complement. Alternat. Med., vol. 2021, pp. 1-18, jun. 2021, doi: 10.1155/2021/9985325.

N. Aoussar et al., «Phytochemical Analysis, Cytotoxic, Antioxidant, and Antibacterial Activities of Lichens», Evid. Based Complement. Alternat. Med., vol. 2020, pp. 1-11, dic. 2020, doi: 10.1155/2020/8104538.

J. Oh, Y. Kim, H.-S. Gang, J. Han, H.-H. Ha, y H. Kim, «Antimicrobial Activity of Divaricatic Acid Isolated from the Lichen Evernia mesomorpha against Methicillin-Resistant Staphylococcus aureus», Molecules, vol. 23, n.o 12, p. 3068, nov. 2018, doi: 10.3390/molecules23123068.

P. K. Tr, M. Ar, V. Ks, y D. Sm, «Antimicrobial Activity of Usnea ghattensis G. Awasthi and Usnea undulata Stirt», p. 7, 2016.

L. P. Timbreza, J. L. D. Reyes, y C. H. C. Flores, «Antibacterial activities of the lichen Ramalina and Usnea collected from Mt. Banoi, Batangas and Dahilayan, Bukidnon, against multi-drug resistant (MDR) bacteria», p. 16, 2017.

R. Chauhan y J. Abraham, «In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens», Iran J Basic Med Sci, vol. 16, n.o 7, Art. n.o 7, 2013.

A. Shcherbakova et al., «Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates», World J. Microbiol. Biotechnol., vol. 37, n.o 8, p. 129, ago. 2021, doi: 10.1007/s11274-021-03099-y.

K. Victor et al., «Design, synthesis and antimicrobial activity of usnic acid derivatives», MedChemComm, vol. 9, n.o 5, pp. 870-882, 2018, doi: 10.1039/C8MD00076J.

S. Ilic, S. Cohen, M. Singh, B. Tam, A. Dayan, y B. Akabayov, «DnaG Primase—A Target for the Development of Novel Antibacterial Agents», Antibiotics, vol. 7, n.o 3, p. 19, 2018, doi: 10.3390 / antibiotics7030072.

S. Sinha et al., «Usnic acid modifies MRSA drug resistance through down‐regulation of proteins involved in peptidoglycan and fatty acid biosynthesis», FEBS Open Bio, vol. 9, n.o 12, pp. 2025-2040, dic. 2019, doi: 10.1002/2211-5463.12650.

D. Du et al., «Multidrug efflux pumps: structure, function and regulation», Nat. Rev. Microbiol., vol. 16, n.o 9, pp. 523-539, sep. 2018, doi: 10.1038/s41579-018-0048-6.

J. B. Moura et al., «In vitro antimicrobial activity of the organic extract of Cladonia substellata Vainio and usnic acid against Staphylococcus spp. obtained from cats and dogs», Pesqui. Veterinária Bras., vol. 37, n.o 4, pp. 368-378, abr. 2017, doi: 10.1590/s0100-736x2017000400011.

M. Barrera Tomas, G. E. Tomas Chota, P. Sheen Cortavarría, P. Fuentes Bonilla, M. A. Inocente Camones, y J. C. Santiago Contreras, «Synthesis of acyl-hydrazone from usnic acid and isoniazid and its anti-Mycobacterium tuberculosis activity», Rev. Colomb. Quím., vol. 46, n.o 3, pp. 17-21, sep. 2017, doi: 10.15446/rev.colomb.quim.v46n3.61980.

R. Kukla et al., «IN VITRO ANTIBACTERIAL ACTIVITY OF USNIC ACID AND OCTYL GALLATE AGAINST RESISTANT ENTEROCOCCUS STRAINS», Mil. Med. Sci. Lett., vol. 83, n.o 3, pp. 104-113, sep. 2014, doi: 10.31482/mmsl.2014.020.

A. Priya, A. Selvaraj, D. Divya, R. Karthik Raja, y S. K. Pandian, «In Vitro and In Vivo Anti-infective Potential of Thymol Against Early Childhood Caries Causing Dual Species Candida albicans and Streptococcus mutans», Front. Pharmacol., vol. 12, p. 760768, nov. 2021, doi: 10.3389/fphar.2021.760768.

P. Nithyanand, R. M. Beema Shafreen, S. Muthamil, y S. Karutha Pandian, «Usnic acid, a lichen secondary metabolite inhibits Group A Streptococcus biofilms», Antonie Van Leeuwenhoek, vol. 107, n.o 1, pp. 263-272, ene. 2015, doi: 10.1007/s10482-014-0324-z.

S. Oran, S. Sahin, P. Sahinturk, S. Ozturk, y C. Demir, «Antioxidant and Antimicrobial Potential, and HPLC Analysis of Stictic and Usnic Acids of Three Usnea Species from Uludag Mountain (Bursa, Turkey)», p. 10, 2016.

L. Fitriani, Afifah, F. Ismed, y A. Bakhtiar, «Hydrogel Formulation of Usnic Acid and Antibacterial Activity Test Against Propionibacterium acne», Sci. Pharm., vol. 87, n.o 1, p. 1, dic. 2018, doi: 10.3390/scipharm87010001.

E. Bachtiar, E. Hermawati, L. D. Juliawaty, y Y. M. Syah, «Antibacterial properties of usnic acid against vibriosis», Res. J. Chem. Environ., p. 3, 2020.

M. G. Tozatti et al., «Activity of the Lichen Usnea steineri and its Major Metabolites against Gram–positive, Multidrug–resistant Bacteria», Nat. Prod. Commun., vol. 11, n.o 4, p. 1934578X1601100, abr. 2016, doi: 10.1177/1934578X1601100419.

Lucarini, Rodrigo et al., «Antimycobacterial activity of Usnea steineri and its major constituent (+)-usnic acid», Afr. J. Biotechnol., vol. 11, n.o 20, mar. 2012, doi: 10.5897/AJB11.3551.

D. R. P. Loureiro et al., «Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review», Molecules, vol. 24, n.o 2, p. 243, ene. 2019, doi: 10.3390/molecules24020243.

Resende, Diana I. S. P. et al., «Lichen Xanthones as Models for New Antifungal Agents», Molecules, vol. 23, n.o 2617, 2018, doi: doi:10.3390/molecules23102617.

A. F. Dávalos et al., «Identification of Nontuberculous Mycobacteria in Drinking Water in Cali, Colombia», Int. J. Environ. Res. Public. Health, vol. 18, n.o 16, p. 8451, ago. 2021, doi: 10.3390/ijerph18168451.