Mechanical properties of polycaprolactone microfilaments for muscular tissue engineering
Main Article Content
Abstract
Polymeric scaffolds can be fabricated as microfilaments to replicate the mechanical characteristics and biological configuration of skeletal muscles and tendons. The microfilaments used in this research were fabricated from polycaprolactone (PCL) pellets by extrusion and a spooling system without using solvents. Their mechanical properties were investigated by applying monotonic and dynamic loads on aligned grouped microfilaments using a customized grip adapter. The fabrication method was simple and produced a homogeneous microfilament with a 90 ± 3 µm diameter. The monotonic tests showed the elasticity of the microfilaments was E = 1863 ± 590 MPa, and their yield strength was σy = 242 ± 45 MPa. The dynamic load test results showed that PCL microfilaments resisted periodic loads for 5.3×105 cycles, retaining a maximum deformation of 55%. The fabricated microfilament has the potential to be used as a biomimetic polymeric scaffold suitable for mechanical stimulation because of its outstanding mechanical behavior during dynamic loading conditions.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
References
Alexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly(ε-caprolactone) single fibers. Mater. Today Commun., 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211
An, J., Chua, C. K., Leong, K. F., Chen, C. H., & Chen, J. P. (2012). Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. Biomed. Microdevices, 14(5), 863–872. https://doi.org/10.1007/s10544-012-9666-3
Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol., 70(5), 703–718. https://doi.org/10.1016/j.compscitech.2010.01.010
Brennan, D. A., Conte, A. A., Kanski, G., Turkula, S., Hu, X., Kleiner, M. T., & Beachley, V. (2018). Mechanical Considerations for Electrospun Nanofibers in Tendon and Ligament Repair. Adv. Healthcare Mater., 7(12), 1–31. https://doi.org/10.1002/adhm.201701277
Capel, A. J., Rimington, R. P., Fleming, J. W., Player, D. J., Baker, L. A., Turner, M. C., … Lewis, M. P. (2019). Scalable 3D printed molds for human tissue engineered skeletal muscle. Front. Bioeng. Biotechnol., 7(Feb), 1–13. https://doi.org/10.3389/fbioe.2019.00020
Cipitria, A., Skelton, A., Dargaville, T. R., Dalton, P. D., & Hutmacher, D. W. (2011). Design, fabrication and characterization of PCL electrospun scaffolds - A review. J. Mater. Chem., 21(26), 9419–9453. https://doi.org/10.1039/c0jm04502k
Croisier, F., Duwez, A. S., Jérôme, C., Léonard, A. F., Van Der Werf, K. O., Dijkstra, P. J., & Bennink, M. L. (2012). Mechanical testing of electrospun PCL fibers. Acta Biomater., 8(1), 218–224. https://doi.org/10.1016/j.actbio.2011.08.015
Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci., 2011(ii). https://doi.org/10.1155/2011/290602
Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J. R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. Eur. Polym. J., 94(February), 208–221. https://doi.org/10.1016/j.eurpolymj.2017.07.013
Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polym., 157(May), 19–31. https://doi.org/10.1016/j.polymer.2018.10.022
Górecka, Ż., Idaszek, J., Kołbuk, D., Choińska, E., Chlanda, A., & Święszkowski, W. (2020). The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCL. Mater. Sci. Eng. C, 114, 111072. https://doi.org/10.1016/j.msec.2020.111072
Heher, P., Maleiner, B., Prüller, J., Teuschl, A. H., Kollmitzer, J., Monforte, X., … Fuchs, C. (2015). A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater., 24(June), 251–265. https://doi.org/10.1016/j.actbio.2015.06.033
Ibrahim, H.M. & Klingner, A., (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, Article 106647.
Jana, S., Levengood, S. K. L., & Zhang, M. (2016). Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. Adv. Mater., 28(48), 10588–10612. https://doi.org/10.1002/adma.201600240
Kim, B., & Mooney, D. J. (2000). Scaffolds for Engineering Smooth. Scanning, 122(June), 210–215.
Kim, W. J., Kim, M., & Kim, G. H. (2018). 3D-Printed Biomimetic Scaffold Simulating Microfibril Muscle Structure. Adv. Funct. Mater., 28(26), 1–12. https://doi.org/10.1002/adfm.201800405
Li, Y., & Wan, W. (2017). Exploring polymer nanofiber mechanics. IEEE Nanotechnol. Mag., 11(September), 16–28.
Moyle, L. A., Jacques, E., & Gilbert, P. M. (2020). Engineering the next generation of human skeletal muscle models: From cellular complexity to disease modeling. Curr. Opin. Biomed. Eng., 16, 9–18. https://doi.org/10.1016/j.cobme.2020.05.006
Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomater., 76, 321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076
Powell, C. A., Smiley, B. L., Mills, J., & Vandenburgh, H. H. (2002). Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. - Cell Physiol., 283(5), 1557–1565. https://doi.org/10.1152/ajpcell.00595.2001
Qazi, T. H., Mooney, D. J., Pumberger, M., Geißler, S., & Duda, G. N. (2015). Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomater., 53, 502–521. https://doi.org/10.1016/j.biomaterials.2015.02.110
Roberts, T. J. (2016). Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J. Exp. Biol., 219(2), 266–275. https://doi.org/10.1242/jeb.124446
Sardenberg, T., Müller, S. S., Silvares, P. R. de A., Mendonça, A. B., & Moraes, R. R. de L. (2003). Assessment of mechanical properties and dimensions of suture threads utilized in orthopedic surgeries. Acta Ortop. Bras., 11(2), 88–94. https://doi.org/10.1590/s1413-78522003000200004
Shanmugam, V., Johnson, D.J., Babu, K., Rajendran, S., Veerasimman, A., Marimuthu, U., Singh, S,. Das, O., Neisiany, R. E., Hedenqvist, M. S., Berto, F., & Ramakrishna. S. (2020) The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer Testing., 93(October), 106925. https://doi.org/10.1016/j.polymertesting.2020.106925
Shearn, J. T., Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Goodwin, W., Gooch, C., … Butler, D. L. (2007). Mechanical stimulation of tendon tissue engineered constructs: Effects on construct stiffness, repair biomechanics, and their correlation. J. Biomech. Eng., 129(6), 848–854. https://doi.org/10.1115/1.2800769
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. J. Appl. Polym. Sci., 96(2), 557–569. https://doi.org/10.1002/app.21481
Sun, H., Mei, L., Song, C., Cui, X., & Wang, P. (2006). The in vivo degradation, absorption and excretion of PCL-based implant. Biomater., 27(9), 1735–1740. https://doi.org/10.1016/j.biomaterials.2005.09.019
Tan, E. P. S., Ng, S. Y., & Lim, C. T. (2005). Tensile testing of a single ultrafine polymeric fiber. Biomater., 26(13), 1453–1456. https://doi.org/10.1016/j.biomaterials.2004.05.021
USP_NF24. (2015). National Formulary, United States Pharmacopeial Convention (p. Rockville, MD). p. Rockville, MD.
Visco, A., Scolaro, C., Giamporcaro, A., De Caro, S., Tranquillo, E., & Catauro, M. (2019). Threads made with blended biopolymers: Mechanical, physical and biological features. Polym., 11(5). https://doi.org/10.3390/polym11050901
Von Fraunhofer, J., Storey, R., Stone, I., & Masterson, B. (1985). Tensile strength of suture materials. J. Biomed. Mater. Res., 19(5), 595–600. https://doi.org/10.1088/0950-7671/28/4/309
Wang, J., Khodabukus, A., Rao, L., Vandusen, K., Abutaleb, N., & Bursac, N. (2019). Engineered skeletal muscles for disease modeling and drug discovery. Biomater., 221(August), 119416. https://doi.org/10.1016/j.biomaterials.2019.119416
Wragg, N. M., Player, D. J., Martin, N. R. W., Liu, Y., & Lewis, M. P. (2019). Development of tissue-engineered skeletal muscle manufacturing variables. Biotechnol. Bioeng., 116(9), 2364–2376. https://doi.org/10.1002/bit.27074