Qualitative and quantitative X-ray diffraction analysis of calcium phosphates by Scherrer, Williamson-Hall and Rietveld refinement methods

Main Article Content

Alexánder Campos-Quirós
Kenneth
Gerardo
Jorge M. Cubero-Sesin
Luis Cordero-Arias

Abstract

Calcium phosphates are important bioceramic materials used for bioactive coatings for metal implants. In the present study, calcium phosphate powders were synthesized by chemical precipitation method using Ca(NO3)2 and (NH4)2HPO4. X-ray diffraction technique was used to perform a qualitative and quantitative analysis of the crystalline phases present in the material using Scherrer, Williamson-Hall, and Rietveld methods. The sample is constituted by 75 weight % of monetite (CaHPO4) and 25 weight % of brushite (CaHPO4.H2O), with an average crystallite size within the submicrometer order. Scanning electron microscopy shows agglomerated particles, with an average size of 2,8 ± 1 µm and different morphologies. Elemental analysis by energy-dispersive X-ray spectroscopy revealed an average calcium/phosphorus (Ca/P) molar ratio of 0.95, which is consistent with monetite and brushite phases. Finally, the presence of both phases is mainly attributed to the low pH during the reaction and the drying process after the synthesis.

Article Details

How to Cite
Campos-Quirós, A., Kenneth, Gerardo, Cubero-Sesin, J. M., & Cordero-Arias, L. (2022). Qualitative and quantitative X-ray diffraction analysis of calcium phosphates by Scherrer, Williamson-Hall and Rietveld refinement methods. Tecnología En Marcha Journal, 35(4), Pág. 104–115. https://doi.org/10.18845/tm.v35i4.5664
Section
Artículo científico

References

S. V. Dorozhkin, and M. Epple, “Biological and medical significance of calcium phosphates,” Angew. Chem Int. Ed., vol. 41, no. 32, pp. 3130–3146, 2002, doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1

M. L. dos Santos, C. dos Santos Riccardi, E. de Almeida Filho, and A. C. Guastaldi, “Calcium phosphates of biological importance based coatings deposited on Ti-15Mo alloy modified by laser beam irradiation for dental and orthopedic applications,” Ceram. Int., vol. 44, no. 18, pp. 22432–22438, 2018, doi: 10.1016/j.ceramint.2018.09.010.

D. Navarro da Rocha et al., “Bioactivity of strontium-monetite coatings for biomedical applications,” Ceram. Int., vol. 45, no. 6, pp. 7568–7579, 2019, doi: 10.1016/j.ceramint.2019.01.051.

F. Pishbin, L. Cordero-Arias, S. Cabanas-Polo, and A. R. Boccaccini, Bioactive polymer-calcium phosphate composite coatings by electrophoretic deposition. Elsevier Ltd, 2015.

T. T. T. Pham et al., “Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 3, 2013, doi: 10.1088/2043-6262/4/3/035014.

S. Koutsopoulos, “Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods,” J. Biomed. Mater. Res., vol. 62, no. 4, pp. 600–612, 2002, doi: 10.1002/jbm.10280.

B. Ben-Nissan, “Biomimetics and bioceramics,” in Learning from nature how to design new implantable biomaterials: from biomineralization fundamentals to biomimetic materials and processing routes., R. L. Reis and S. Weiner, Eds. Netherlands: Klumer Academic Publishers, 2004, pp. 89–103.

L. Montastruc, C. Azzaro-Pantel, B. Biscans, M. Cabassud, and S. Domenech, “A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor,” Chem. Eng. J., vol. 94, no. 1, pp. 41–50, 2003, doi: 10.1016/S1385-8947(03)00044-5.M.

R. Kumar, K. H. Prakash, P. Cheang, and K. A. Khor, “Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles,” Langmuir, vol. 20, no. 13, pp. 5196–5200, 2004, doi: 10.1021/la049304f.

P. Ferraz, F. J. Monteiro, and C. M. Manuel, “Hydroxyapatite nanoparticles : A review of preparation methodologies,” J. Appl. Biomater., vol. 2, no. 2, pp. 74–80, 2004, doi: 1722-6899/074-07$15.00/0.

H. M. Rietveld, “An Algol program for the refinement of nuclear and magnetic structures by the profile method.,” Netherlands, 1969.

G. Will, “The Rietveld method,” in Powder diffraction: the Rietveld method and the two-stage methof, Germany: Springer, 2006, pp. 41–72.

G. S. Girolami, “Powder X-ray diffraction,” in X-ray crystallography, USA: University Science Books, 2016, pp. 439–450.

P. Scherrer, “Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Klasse, vol. 1918, pp. 98–100, 1918.

Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, https://www.crystalimpact.de/match

A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,” World J. Nano Sci. Eng., vol. 02, no. 03, pp. 154–160, 2012, doi: 10.4236/wjnse.2012.23020.S.

G. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall., vol. 1, no. 1, pp. 22–31, 1953, doi: 10.1016/0001-6160(53)90006-6.

D. Nath, F. Singh, and R. Das, “X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study,” Mater. Chem. Phys., vol. 239, no. August 2019, p. 122021, 2020, doi: 10.1016/j.matchemphys.2019.122021.

B. H. Toby and R. B. Von Dreele, “GSAS-II: The genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr., vol. 46, no. 2, pp. 544–549, 2013, doi: 10.1107/S0021889813003531.

S. A. Kube et al., “Combinatorial study of thermal stability in ternary nanocrystalline alloys,” Acta Mater., vol. 188, pp. 40–48, 2020, doi: 10.1016/j.actamat.2020.01.059.

B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, Thrid edit. USA: Pearson Education Limited, 2014.

S. Mondal, A. Dey, and U. Pal, “Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study,” Adv. nano Res., vol. 4, no. 4, pp. 295–307, 2016, doi: 10.12989/anr.2016.4.4.295.

Raynaud, E. Champion, D. Bernache-Assollant, and P. Thomas, “Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders,” Biomaterials, vol. 23, no. 4, pp. 1065–1072, 2002, doi: 10.1016/S0142-9612(01)00218-6.

O. Mekmene, S. Quillard, T. Rouillon, J. M. Bouler, M. Piot, and F. Gaucheron, “Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions,” Dairy Sci. Technol., vol. 89, no. 3–4, pp. 301–316, 2009, doi: 10.1051/dst/2009019.

F. Tamimi, Z. Sheikh, and J. Barralet, “Dicalcium phosphate cements: Brushite and monetite,” Acta Biomater., vol. 8, no. 2, pp. 474–487, 2012, doi: 10.1016/j.actbio.2011.08.005.

A. Chandrasekar, S. Sagadevan, and A. Dakshnamoorthy, “Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique,” Int. J. Phys. Sci., vol. 8, no. 32, pp. 1639–1645, 2013, doi: 10.5897/IJPS2013.3990.

T. K. N. Hoang, L. Deriemaeker, B. Van La, and R. Finsy, “Monitoring the simultaneous ostwald ripening and solubilization of emulsions,” Langmuir, vol. 20, no. 21, pp. 8966–8969, 2004, doi: 10.1021/la049184b.

J. Marchi, P. Greil, J. C. Bressiani, A. Bressiani, and F. Müller, “Influence of synthesis conditions on the characteristics of biphasic calcium phosphate powders,” Int. J. Appl. Ceram. Technol., vol. 6, no. 1, pp. 60–71, 2009, doi: 10.1111/j.1744-7402.2008.02254.x.

A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami, and R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods,” Solid State Sci., vol. 13, no. 1, pp. 251–256, 2011, doi: 10.1016/j.solidstatesciences.2010.11.024.