Nanocellulose production from African oil palm rachis and sugarcane bagasse

Main Article Content

Eddy Jirón-García
Karina Rodríguez-Mora
Cesar Bernal-Samaniego

Abstract

African oil palm rachis and sugarcane bagasse were used as raw materials to produce cellulose nanofibrils by hybrid method which combine chemical treatment and mechanical rupture. The cellulose obtained from both raw materials after hydrolysis was characterized by Infrared Spectroscopy, Thermogravimetric Degradation Analysis, Scanning Electron Microscopy, Fluorescence Microscopy and X-ray Diffraction. At the end of the mechanical rupture, Transmission Electron Microscopy was performed at the nanofibrils to determine their size. A lignin removal percentage of 74,1 % was observed for the african oil palm rachis and 65,6 % for the sugarcane bagasse after chemical treatment; which generated microcellulose of 6-12 µm and 10-18 µm for the rachis and bagasse respectively. The mechanical rupture treatment with the high-power sonifier produced nanofibrils of 19-24 nm for the palm rachis and 9,22-12 nm for the cane bagasse; with a Crystallinity Index of 70% in both cases.

Article Details

How to Cite
Jirón-García, E., Rodríguez-Mora, K., & Bernal-Samaniego, C. . (2022). Nanocellulose production from African oil palm rachis and sugarcane bagasse . Tecnología En Marcha Journal, 35(2), Pág. 167–181. https://doi.org/10.18845/tm.v35i3.5609
Section
Artículo científico

References

INEC, “Encuesta Nacional Agropecuaria 2019. Resultados Generales de la Actividad Agrícola y Forestal,” San José, Costa Rica, 2020. [Online]. Available: https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reena-cultivos2019.pdf.

S. Mora Ramírez, R. Quesada Salas, L. Jaén Barrantes, and D. Monge Cordero, “Boletín Estadístico Agropecuario N° 30|Serie Cronológica 2016-2019,” 2020.

C. I. Torres Pérez and L. A. Quintero Lopez, “Análisis de residuos sólidos de palma africana, como alternativa de aprovechamiento de energías renovables en el departamento del Cesar,” Ing. USBMed, vol. 10, no. 1, pp. 8–18, 2019, doi: 10.21500/20275846.3662.

R. Rodríguez, “Aproveche desechos como energía,” La República, Dec. 28, 2013.

CANAPALMA, “Antecedentes sobre el cultivo e industrialización de la palma africana en el país,” Quienes somos. http://www.canapalma.cr/?page_id=1195 (accessed Jan. 05, 2020).

Programa CYMA Competitividad y Medio Ambiente, Plan de residuos sólidos-Informe de avance No1: Diagnóstico y áreas prioritarias. San José, Costa Rica: Editorama, 2007.

C. Tenorio, R. Roque, and J. Valaert, “Characterisation of pellets made from oil palm residues in Costa Rica,” J. Palm Oil Res., vol. 28, pp. 198–210, Jun. 2016, doi: 10.21894/jopr.2016.2802.08.

V. Gonzáles and J. Morin, “Costa Rica Sugar Annual Report: Executive Summary,” 2019. [Online]. Available: https://www.fas.usda.gov/data/costa-rica-sugar-annual-5.

LAICA, “Ingenios,” Liga Agrícola Industrial de la Caña de Azucar. https://laica.cr/ingenios/ (accessed Jan. 02, 2019).

F. D. Jiménez Rey, “ELABORACIÓN DE UN MATERIAL BIOLÓGICO A PARTIR DEL HONGO PLEUROTUS OSTREATUS PARA SU UTILIZACIÓN EN APLICACIONES DE INGENIERÍA,” Universidad de Costa Rica, 2018.

R. G. Mejías Vásquez, “Evaluación del balance de energía del Sistema de Turbogeneración usado para la deficnición de la ‘Metodología Tarifaria para una Planta Modelo de Generación de Electricidad con Bagazo de Caña’ vigente en Costa Rica en el año 2015,” Universidad de Costa Rica, 2018.

N. Bagotia, A. Kumar Sharma, and S. Kumar, “A review on modified sugarcane bagasse biosorbent for removal of dyes,” 2020, doi: 10.1016/j.chemosphere.2020.129309.

J. Sandoval Salazar, “Potencial de aporte en generación eléctrica en Costa Rica por parte de los ingenios azucareros mediante biomasa,” Universidad de Costa Rica, 2014.

A. Mandal and D. Chakrabarty, “Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization,” Carbohydr. Polym., vol. 86, no. 3, pp. 1291–1299, 2011, doi: 10.1016/j.carbpol.2011.06.030.

D. Páliz Hidalgo, “Factibilidad del uso del raquis de palma africana en mezcla con agregados de construcción para la fabricación de ladrillos ecológicos,” Escuela Superior Politécnica de Chimborazo, 2014.

B. Deepa et al., “Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study,” Cellulose, vol. 22, no. 2, pp. 1075–1090, 2015, doi: 10.1007/s10570-015-0554-x.

F. Jiang and Y.-L. Hsieh, “Chemically and mechanically isolated nanocellulose and their self-assembled structures,” Carbohydr. Polym., vol. 95, no. 1, pp. 32–40, 2013, doi: https://doi.org/10.1016/j.carbpol.2013.02.022.

M. Jorfi and E. J. Foster, “Recent advances in nanocellulose for biomedical applications,” J. Appl. Polym. Sci., vol. 132, no. 14, pp. 1–19, 2015, doi: 10.1002/app.41719.

H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/631013.

M. Camacho et al., “Synthesis and characterization of nanocrystalline cellulose derived from Pineapple peel residues,” J. Renew. Mater., vol. 5, no. 3–4, pp. 271–279, 2017, doi: 10.7569/JRM.2017.634117.

P. Rigg-Aguilar, R. Moya, J. Vega-Baudrit, A. Navarro-Mora, and J. Gaitan-Alvarez, “European Pallets Fabricated with Composite Wood Blocks from Tropical Species Reinforced with Nanocrystalline Cellulose: Effects on the Properties of Blocks and Static Flexure of the Pallet,” Bioresour. Vol 14, No 2, 2019, [Online]. Available: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_2_3651_Rigg_Aguilar_European_Pallet_Composite_Wood_Blocks.

P. Rigg-Aguilar et al., “Micro-and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives,” 2020, doi: 10.1155/2020/1393160.

E. G. Jirón García, K. Rodríguez Mora, and C. Bernal, “Cellulose Nanofiber Production from Banana Rachis,” Int. J. Eng. Sci. Comput., vol. 10, no. 2, pp. 24683–24689, 2020.

S. Michałowski, M. A. Mosiewicki, M. Kurańska, M. I. Aranguren, and A. Prociak, “Polyurethane composites synthesized using natural oil-based polyols and sisal fibers,” J. Renew. Mater., vol. 6, no. 4, pp. 426–437, 2018, doi: 10.7569/JRM.2017.634163.

P. Rigg-Aguilar et al., “Micro- and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives,” J. Nanomater., vol. 2020, p. 1393160, 2020, doi: 10.1155/2020/1393160.

E. Solís, “Efecto de la nanocelulosa obtenida del desecho del rastrojo de piñaen mezclas cementicidas de mortero hidráulico.,” Universidad de Costa Rica, 2018.

T. Abitbol et al., “Nanocellulose , a tiny fiber with huge applications,” Curr. Opin. Biotechnol., vol. 39, no. I, pp. 76–88, 2016, doi: 10.1016/j.copbio.2016.01.002.

P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, and G. Guan, “Nanocellulose: Extraction and application,” Carbon Resour. Convers., vol. 1, no. 1, pp. 32–43, 2018, doi: 10.1016/j.crcon.2018.05.004.

A. W. Carpenter, C. F. De Lannoy, and M. R. Wiesner, “Cellulose nanomaterials in water treatment technologies,” Environ. Sci. Technol., vol. 49, no. 9, pp. 5277–5287, 2015, doi: 10.1021/es506351r.

Y. Liu et al., “Cascade utilization of lignocellulosic biomass to high-value products,” Green Chem., vol. 21, no. 13, pp. 3499–3535, 2019, doi: 10.1039/c9gc00473d.

K. Rahbar Shamskar, H. Heidari, and A. Rashidi, “Study on Nanocellulose Properties Processed Using Different Methods and Their Aerogels,” J. Polym. Environ., vol. 27, no. 7, pp. 1418–1428, 2019, doi: 10.1007/s10924-019-01438-7.

A. Mandal and D. Chakrabarty, “Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse,” J. Ind. Eng. Chem., vol. 20, no. 2, pp. 462–473, 2014, doi: https://doi.org/10.1016/j.jiec.2013.05.003.

Y. Habibi, “Key advances in the chemical modification of nanocelluloses,” Chem. Soc. Rev., vol. 43, no. 5, pp. 1519–1542, 2014, doi: 10.1039/c3cs60204d.

F. Jiang and Y. Lo Hsieh, “Chemically and mechanically isolated nanocellulose and their self-assembled structures,” Carbohydr. Polym., vol. 95, no. 1, pp. 32–40, 2013, doi: 10.1016/j.carbpol.2013.02.022.

M. Mahardika, H. Abral, A. Kasim, S. Arief, and M. Asrofi, “Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication,” Fibers, vol. 6, no. 2, pp. 1–13, 2018, doi: 10.3390/fib6020028.

Q. Wang and Y. H. Zhang, “Extraction of nanocellulose from sugarcane bagasse,” Appl. Mech. Mater., vol. 633–634, pp. 550–553, 2014, doi: 10.4028/www.scientific.net/AMM.633-634.550.

A. Cerda, L. Mejías, T. Gea, and A. Sánchez, “Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: The consistency of the process and the microbial communities involved,” Bioresour. Technol., vol. 243, pp. 1059–1068, 2017, doi: 10.1016/j.biortech.2017.07.076.

V. Hospodarova, E. Singovszka, and N. Stevulova, “Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials,” Am. J. Anal. Chem., vol. 9, no. 06, p. 303, 2018.

K. Singh, T. J. M. Sinha, and S. Srivastava, “Functionalized nanocrystalline cellulose: Smart biosorbent for decontamination of arsenic,” Int. J. Miner. Process., vol. 139, pp. 51–63, 2015, doi: 10.1016/j.minpro.2015.04.014.

R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán, “Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features,” Carbohydr. Polym., vol. 76, no. 1, pp. 51–59, 2009, doi: 10.1016/j.carbpol.2008.09.024.

H. Quoc Lam, Y. Le Bigot, M. Delmas, and G. Avignon, “A new procedure for the destructuring of vegetable matter at atmospheric pressure by a catalyst/solvent system of formic acid/acetic acid. Applied to the pulping of triticale straw,” Ind. Crops Prod., vol. 14, no. 2, pp. 139–144, 2001, doi: 10.1016/S0926-6690(01)00077-2.

M. M. Ibrahim, F. A. Agblevor, and W. K. El-Zawawy, “Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass,” BioResources, vol. 5, no. 1, pp. 397–418, 2010, doi: 10.15376/biores.5.1.397-418.

M. Poletto, A. J. Zattera, M. M. C. Forte, and R. M. C. Santana, “Thermal decomposition of wood: Influence of wood components and cellulose crystallite size,” Bioresour. Technol., vol. 109, pp. 148–153, 2012, doi: 10.1016/j.biortech.2011.11.122.

A. Alemdar and M. Sain, “Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties,” Compos. Sci. Technol., vol. 68, no. 2, pp. 557–565, 2008, doi: https://doi.org/10.1016/j.compscitech.2007.05.044.

R. Moya, A. Rodríguez-Zúñiga, and A. Puente-Urbina, “Thermogravimetric and devolatilisation analysis for five plantation species: Effect of extractives, ash compositions, chemical compositions and energy parameters,” Thermochim. Acta, vol. 647, pp. 36–46, 2017, doi: 10.1016/j.tca.2016.11.014.

N. Števulova, V. Hospodárova, and A. Eštoková, “Study of thermal analysis of selected cellulose fibres,” Geosci. Eng., vol. 62, no. 3, pp. 18–21, 2016.

C. H. Haigler, R. M. Brown, and M. Benziman, “Calcofluor White ST Alters the in vivo Assembly of Cellulose Microfibrils,” Science (80-. )., vol. 210, no. 4472, pp. 903–906, Jan. 1980, [Online]. Available: http://www.jstor.org.ezproxy.sibdi.ucr.ac.cr:2048/stable/1684445.

J. F. Ma, G. H. Yang, J. Z. Mao, and F. Xu, “Characterization of anatomy, ultrastructure and lignin microdistribution in Forsythia suspensa,” Ind. Crops Prod., vol. 33, no. 2, pp. 358–363, 2011, doi: 10.1016/j.indcrop.2010.11.009.

H. M. Hernández-Hernández et al., “Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste,” Microsc. Microanal., vol. 22, no. 5, pp. 1084–1097, 2016, doi: 10.1017/S1431927616011818.

P. Ahvenainen, I. Kontro, and K. Svedström, “Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials,” Cellulose, vol. 23, no. 2, pp. 1073–1086, 2016, doi: 10.1007/s10570-016-0881-6.

A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, J. P. Knox, and R. S. Blackburn, “Comparative analysis of crystallinity changes in cellulose i polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes,” Biomacromolecules, vol. 12, no. 11, pp. 4121–4126, 2011, doi: 10.1021/bm201176m.

J. J. Prías-Barragán, N. A. Echeverry-Montoya, and H. Ariza-Calderón, “Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 39, no. 153, p. 444, 2015, doi: 10.18257/raccefyn.139.