Efecto de azitromicina sobre el crecimiento de Chlorella sorokiniana

Contenido principal del artículo

Yariela Nuñez-Salazar
Karina Rodríguez-Mora
Eddy Jirón-García
Fabian Villalta-Romero

Resumen

Mediante cultivos mixotróficos se analizó el efecto de la Azitromicina como contaminante en
el medio de cultivo, para esto, se evalúo la cinética de crecimiento de la microalga Chlorella
sorokiniana. Se evaluaron tres concentraciones de azitromicina en el medio de cultivo: 10, 15
y 25 ppm. Para la evaluación de la cinética se calculó la tasa de crecimiento exponencial,
tiempo de duplicación y tasas de rendimiento. Aunque la viabilidad de Chlorella sorokiniana fue
significativamente reducida por la presencia de azitromicina, esta microalga logró crecer hasta
por 18 días en concentraciones de azitromicina (< 25 ppm) superiores a las reportadas en plantas
de tratamiento de aguas, lo cual demuestra su potencial para ser empleada en estrategias
de biorremediación de este antibiótico. Hasta donde es de nuestro conocimiento, este es el
primer reporte de la cinética de crecimiento de Chlorella sorokiniana en concentraciones de
azitromicina de 10 a 25 ppm.

Detalles del artículo

Cómo citar
Nuñez-Salazar, Y., Rodríguez-Mora, K., Jirón-García, E., & Villalta-Romero, F. (2024). Efecto de azitromicina sobre el crecimiento de Chlorella sorokiniana . Revista Tecnología En Marcha, 37(9), Pág. 63–72. https://doi.org/10.18845/tm.v37i9.7610
Sección
Artículo científico

Citas

D. M. Ribeiro, L. F. Roncaratti, G. C. Possa, L. C. Garcia, L. J. Cançado, T. C. R. Williams y &. d. S. A. Figueiredo,

“A low-cost approach for Chlorella sorokiniana production through combined use of urea, ammonia and nitrate

based fertilizers,” Bioresource Technology Reports, vol. 9,2020. https://doi.org/10.1016/j.biteb.2019.100354

J. Wehr, R. Sheath, Kociolek y J. Patrick, “Freshwater Algae of North America: ecology and classification”,

Academic Press, Elsevier, 2014. https://doi.org/10.1016/C2010-0-66664-8

Ortiz-Moreno Martha L., Cortés-Castillo Caroll E., Sánchez-Villarraga Julian, Padilla Jorge, Otero-Paternina

Angélica M. Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo

en condiciones autotróficas y mixotróficas,” Universidad de los Llanos, pp. 11-20, 2012. [Online] http://www.

scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-37092012000100002&lng=en.

L. Yu, T. Li, J. Ma, Q. Zhao, P. Wensel, J. Lian y S. Chen, “A kinetic model of heterotrophic and mixotrophic

cultivation of the potential biofuel organism microalgae Chlorella sorokiniana,” Algal Research, vol. 64, pp.

-11, 2022. https://doi.org/10.1016/j.algal.2022.102701

A. León-Vaz, R. León, E. Díaz-Santos, J. Vigara y S. & Raposo, “Using agro-industrial wastes for mixotrophic

growth and lipids production by the green microalga Chlorella sorokiniana,” New Biotechnology, vol. 51, p.

–38, 2019. https://doi.org/10.1016/j.nbt.2019.02.001

L. Leng, L. Wei, Q. Xiong, S. Xu, W. Li, S. Lv, Q. Lu, L. Wan, Z. Wen y W. & Zhou, “Use of microalgae based

technology for the removal of antibiotics from wastewater: A review,” Chemosphere, vol. 238, 2020. https://doi.

org/10.1016/j.chemosphere.2019.124680

Y. Chong, L. Chi, Z. Ying, D. Xiang, W. Jing-Han, C. Zhan-You y Z. Qian, “Effects of environment-relevant

concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent,” Algal Research,

vol. 70, pp. 2211-9264, 2023. https://doi.org/10.1016/j.algal.2023.103008

A. Hom-Diaz, A. Jaén, S. Rodríguez, D. Barceló, T. Vicent y P. Blánquez, “Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and

Pseudokirchneriella subcapitata),” Algal Research, vol. 61, 2022. https://doi.org/10.1016/j.algal.2021.102560

C. Kiki, A. Rashid, Y. Wang, Y. Li, Q. Zeng, C. P. Yu y Q. & Sun, “Dissipation of antibiotics by microalgae:

Kinetics, identification of transformation products and pathways,” Journal of Hazardous Materials, vol. 387,

https://doi.org/10.1016/j.jhazmat.2019.121985

Li, Y., Ma, Y., Yang, L., Duan, S., Zhou, F., Chen, J., ... & Zhang, B, “Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways,” Ecotoxicology and

Environmental Safety, vol. 197, pp. 1-7, 2020. https://doi.org/10.1016/j.ecoenv.2020.110573

S. Aydin, M. Emin Aydin, A. Ulvi y H. & Kilic, “Antibiotics in hospital effluents: occurrence, contribution to urban

wastewater, removal in a wastewater treatment plant, and environmental risk assessment,” Environ Sci Pollut

Res, vol. 26, p. 544–558, 2019. https://doi.org/10.1007/s11356-018-3563-0

Collado, N., Rodriguez-Mozaz, S., Gros, M., Rubirola, A., Barceló, D., Comas, J., ... & Buttiglieri, G.,

“Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system,” Environmental Pollution, pp. 202- 212, 2014. https://doi.org/10.1016/j.envpol.2013.10.040

C. E. Santos, R. N. de Coimbra, S. P. Bermejo, A. I. G. Pérez, and M. O. Cabero, ‘“Comparative Assessment

of Pharmaceutical Removal from Wastewater by the Microalgae Chlorella sorokiniana, Chlorella vulgaris and

Scenedesmus obliquus’, Biological Wastewater Treatment and Resource Recovery”. InTech, Mar. 29, 2017.

https://doi.org/10.5772/66772.

Senta, I., Kostanjevecki, P., Krizman-Matasic, I., Terzic, S., & Ahel, M., “Occurence and behavior of macrolide

antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and

transformation products,” Environmental Science and Technology, vol. 53, pp. 7463-7472, 2019. https://doi.

org/10.1021/acs.est.9b01420

Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & RodriguezPinzón, M., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature”.

Journal of Environmental Management, 237, 408–423 2019. https://doi.org/10.1016/j.jenvman.2019.02.100

Spongberg, A. L., Witter, J. D., Acuña, J., Vargas, J., Murillo, M., Umaña, G., ... & Perez, G., “Reconnaissance

of selected PPCP compounds in Costa Rican surface waters,” Water research, 45(20), 6709-6717, 2011

https://doi.org/10.1016/j.watres.2011.10.004

Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., “Briceño-Guevara, S.,

Rojas-Sánchez, C. E., ... & Rodríguez-Rodríguez, C. E., “Occurrence of pharmaceuticals, hazard assessment

and ecotoxicological evaluation of wastewater treatment plants in Costa Rica, “ Science of The Total

Environment, vol. 746, p. 141200, Dec. 2020,. https://doi.org/10.1016/j.scitotenv.2020.141200

Mao, Y., Yu, Y., Ma, Z., Li, H., Yu, W., Cao, L., & He, Q. “Azithromycin induces dual effects on microalgae:

Roles of photosynthetic damage and oxidative stress, “ Ecotoxicology and environmental safety, 222, 112496.

https://doi.org/10.1016/j.ecoenv.2021.112496.

Kiki, C., Rashid, A., Zhang, Y., Li, X., Chen, T. Y., Adéoye, A. B. E., ... & Sun, Q. “Microalgal mediated antibiotic

co-metabolism: Kinetics, transformation products and pathways, “ Chemosphere, 292, 133438, 2011. https://

doi.org/10.1016/j.chemosphere.2021.133438

Stein-Taylor, J. R. , “Handbook of phycological methods: culture methods and growth measurements.,”

Cambridge University Press, pp. 289–312., 1973.

A. F. El-Yazbi, E. F. Khamis, R. M. Youssef, M. A. El-Sayed y F. M. & Aboukhalil, “Green analytical methods

for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic

formulation of azithromycin and levofloxacin,” Heliyon, vol. 6, nº 9, 2020. https://doi.org/10.1016/j.heliyon.2020.

e04819