Efecto de azitromicina sobre el crecimiento de Chlorella sorokiniana
Contenido principal del artículo
Resumen
Mediante cultivos mixotróficos se analizó el efecto de la Azitromicina como contaminante en
el medio de cultivo, para esto, se evalúo la cinética de crecimiento de la microalga Chlorella
sorokiniana. Se evaluaron tres concentraciones de azitromicina en el medio de cultivo: 10, 15
y 25 ppm. Para la evaluación de la cinética se calculó la tasa de crecimiento exponencial,
tiempo de duplicación y tasas de rendimiento. Aunque la viabilidad de Chlorella sorokiniana fue
significativamente reducida por la presencia de azitromicina, esta microalga logró crecer hasta
por 18 días en concentraciones de azitromicina (< 25 ppm) superiores a las reportadas en plantas
de tratamiento de aguas, lo cual demuestra su potencial para ser empleada en estrategias
de biorremediación de este antibiótico. Hasta donde es de nuestro conocimiento, este es el
primer reporte de la cinética de crecimiento de Chlorella sorokiniana en concentraciones de
azitromicina de 10 a 25 ppm.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
D. M. Ribeiro, L. F. Roncaratti, G. C. Possa, L. C. Garcia, L. J. Cançado, T. C. R. Williams y &. d. S. A. Figueiredo,
“A low-cost approach for Chlorella sorokiniana production through combined use of urea, ammonia and nitrate
based fertilizers,” Bioresource Technology Reports, vol. 9,2020. https://doi.org/10.1016/j.biteb.2019.100354
J. Wehr, R. Sheath, Kociolek y J. Patrick, “Freshwater Algae of North America: ecology and classification”,
Academic Press, Elsevier, 2014. https://doi.org/10.1016/C2010-0-66664-8
Ortiz-Moreno Martha L., Cortés-Castillo Caroll E., Sánchez-Villarraga Julian, Padilla Jorge, Otero-Paternina
Angélica M. Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo
en condiciones autotróficas y mixotróficas,” Universidad de los Llanos, pp. 11-20, 2012. [Online] http://www.
scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-37092012000100002&lng=en.
L. Yu, T. Li, J. Ma, Q. Zhao, P. Wensel, J. Lian y S. Chen, “A kinetic model of heterotrophic and mixotrophic
cultivation of the potential biofuel organism microalgae Chlorella sorokiniana,” Algal Research, vol. 64, pp.
-11, 2022. https://doi.org/10.1016/j.algal.2022.102701
A. León-Vaz, R. León, E. Díaz-Santos, J. Vigara y S. & Raposo, “Using agro-industrial wastes for mixotrophic
growth and lipids production by the green microalga Chlorella sorokiniana,” New Biotechnology, vol. 51, p.
–38, 2019. https://doi.org/10.1016/j.nbt.2019.02.001
L. Leng, L. Wei, Q. Xiong, S. Xu, W. Li, S. Lv, Q. Lu, L. Wan, Z. Wen y W. & Zhou, “Use of microalgae based
technology for the removal of antibiotics from wastewater: A review,” Chemosphere, vol. 238, 2020. https://doi.
org/10.1016/j.chemosphere.2019.124680
Y. Chong, L. Chi, Z. Ying, D. Xiang, W. Jing-Han, C. Zhan-You y Z. Qian, “Effects of environment-relevant
concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent,” Algal Research,
vol. 70, pp. 2211-9264, 2023. https://doi.org/10.1016/j.algal.2023.103008
A. Hom-Diaz, A. Jaén, S. Rodríguez, D. Barceló, T. Vicent y P. Blánquez, “Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and
Pseudokirchneriella subcapitata),” Algal Research, vol. 61, 2022. https://doi.org/10.1016/j.algal.2021.102560
C. Kiki, A. Rashid, Y. Wang, Y. Li, Q. Zeng, C. P. Yu y Q. & Sun, “Dissipation of antibiotics by microalgae:
Kinetics, identification of transformation products and pathways,” Journal of Hazardous Materials, vol. 387,
https://doi.org/10.1016/j.jhazmat.2019.121985
Li, Y., Ma, Y., Yang, L., Duan, S., Zhou, F., Chen, J., ... & Zhang, B, “Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways,” Ecotoxicology and
Environmental Safety, vol. 197, pp. 1-7, 2020. https://doi.org/10.1016/j.ecoenv.2020.110573
S. Aydin, M. Emin Aydin, A. Ulvi y H. & Kilic, “Antibiotics in hospital effluents: occurrence, contribution to urban
wastewater, removal in a wastewater treatment plant, and environmental risk assessment,” Environ Sci Pollut
Res, vol. 26, p. 544–558, 2019. https://doi.org/10.1007/s11356-018-3563-0
Collado, N., Rodriguez-Mozaz, S., Gros, M., Rubirola, A., Barceló, D., Comas, J., ... & Buttiglieri, G.,
“Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system,” Environmental Pollution, pp. 202- 212, 2014. https://doi.org/10.1016/j.envpol.2013.10.040
C. E. Santos, R. N. de Coimbra, S. P. Bermejo, A. I. G. Pérez, and M. O. Cabero, ‘“Comparative Assessment
of Pharmaceutical Removal from Wastewater by the Microalgae Chlorella sorokiniana, Chlorella vulgaris and
Scenedesmus obliquus’, Biological Wastewater Treatment and Resource Recovery”. InTech, Mar. 29, 2017.
https://doi.org/10.5772/66772.
Senta, I., Kostanjevecki, P., Krizman-Matasic, I., Terzic, S., & Ahel, M., “Occurence and behavior of macrolide
antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and
transformation products,” Environmental Science and Technology, vol. 53, pp. 7463-7472, 2019. https://doi.
org/10.1021/acs.est.9b01420
Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & RodriguezPinzón, M., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature”.
Journal of Environmental Management, 237, 408–423 2019. https://doi.org/10.1016/j.jenvman.2019.02.100
Spongberg, A. L., Witter, J. D., Acuña, J., Vargas, J., Murillo, M., Umaña, G., ... & Perez, G., “Reconnaissance
of selected PPCP compounds in Costa Rican surface waters,” Water research, 45(20), 6709-6717, 2011
https://doi.org/10.1016/j.watres.2011.10.004
Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., “Briceño-Guevara, S.,
Rojas-Sánchez, C. E., ... & Rodríguez-Rodríguez, C. E., “Occurrence of pharmaceuticals, hazard assessment
and ecotoxicological evaluation of wastewater treatment plants in Costa Rica, “ Science of The Total
Environment, vol. 746, p. 141200, Dec. 2020,. https://doi.org/10.1016/j.scitotenv.2020.141200
Mao, Y., Yu, Y., Ma, Z., Li, H., Yu, W., Cao, L., & He, Q. “Azithromycin induces dual effects on microalgae:
Roles of photosynthetic damage and oxidative stress, “ Ecotoxicology and environmental safety, 222, 112496.
https://doi.org/10.1016/j.ecoenv.2021.112496.
Kiki, C., Rashid, A., Zhang, Y., Li, X., Chen, T. Y., Adéoye, A. B. E., ... & Sun, Q. “Microalgal mediated antibiotic
co-metabolism: Kinetics, transformation products and pathways, “ Chemosphere, 292, 133438, 2011. https://
doi.org/10.1016/j.chemosphere.2021.133438
Stein-Taylor, J. R. , “Handbook of phycological methods: culture methods and growth measurements.,”
Cambridge University Press, pp. 289–312., 1973.
A. F. El-Yazbi, E. F. Khamis, R. M. Youssef, M. A. El-Sayed y F. M. & Aboukhalil, “Green analytical methods
for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic
formulation of azithromycin and levofloxacin,” Heliyon, vol. 6, nº 9, 2020. https://doi.org/10.1016/j.heliyon.2020.
e04819