Effect of azithromycin on the growth of Chlorella sorokiniana

Main Article Content

Yariela Nuñez-Salazar
Karina Rodríguez-Mora
Eddy Jirón-García
Fabian Villalta-Romero

Abstract

By employing mixotrophic cultures, the effect of Azithromycin as a contaminant in the culture
medium was analyzed, evaluating the growth kinetics of the microalga Chlorella sorokiniana.
Three concentrations of azithromycin were evaluated in the culture medium: 10, 15, and 25
ppm. Growth kinetics were assessed by calculating the exponential growth rate, doubling
time, and yield rates. Although the viability of Chlorella sorokiniana was significantly reduced
by the presence of azithromycin, this microalga managed to grow for up to 18 days in
azithromycin concentrations (< 25 ppm) higher than those reported in water treatment plants,
which demonstrates its potential to be used in bioremediation strategies. To the best of our
knowledge, this is the first report of the growth kinetics of Chlorella sorokiniana at azithromycin
concentrations of 10 to 25 ppm.

Article Details

How to Cite
Nuñez-Salazar, Y., Rodríguez-Mora, K., Jirón-García, E., & Villalta-Romero, F. (2024). Effect of azithromycin on the growth of Chlorella sorokiniana . Tecnología En Marcha Journal, 37(9), Pág. 63–72. https://doi.org/10.18845/tm.v37i9.7610
Section
Artículo científico

References

D. M. Ribeiro, L. F. Roncaratti, G. C. Possa, L. C. Garcia, L. J. Cançado, T. C. R. Williams y &. d. S. A. Figueiredo,

“A low-cost approach for Chlorella sorokiniana production through combined use of urea, ammonia and nitrate

based fertilizers,” Bioresource Technology Reports, vol. 9,2020. https://doi.org/10.1016/j.biteb.2019.100354

J. Wehr, R. Sheath, Kociolek y J. Patrick, “Freshwater Algae of North America: ecology and classification”,

Academic Press, Elsevier, 2014. https://doi.org/10.1016/C2010-0-66664-8

Ortiz-Moreno Martha L., Cortés-Castillo Caroll E., Sánchez-Villarraga Julian, Padilla Jorge, Otero-Paternina

Angélica M. Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo

en condiciones autotróficas y mixotróficas,” Universidad de los Llanos, pp. 11-20, 2012. [Online] http://www.

scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-37092012000100002&lng=en.

L. Yu, T. Li, J. Ma, Q. Zhao, P. Wensel, J. Lian y S. Chen, “A kinetic model of heterotrophic and mixotrophic

cultivation of the potential biofuel organism microalgae Chlorella sorokiniana,” Algal Research, vol. 64, pp.

-11, 2022. https://doi.org/10.1016/j.algal.2022.102701

A. León-Vaz, R. León, E. Díaz-Santos, J. Vigara y S. & Raposo, “Using agro-industrial wastes for mixotrophic

growth and lipids production by the green microalga Chlorella sorokiniana,” New Biotechnology, vol. 51, p.

–38, 2019. https://doi.org/10.1016/j.nbt.2019.02.001

L. Leng, L. Wei, Q. Xiong, S. Xu, W. Li, S. Lv, Q. Lu, L. Wan, Z. Wen y W. & Zhou, “Use of microalgae based

technology for the removal of antibiotics from wastewater: A review,” Chemosphere, vol. 238, 2020. https://doi.

org/10.1016/j.chemosphere.2019.124680

Y. Chong, L. Chi, Z. Ying, D. Xiang, W. Jing-Han, C. Zhan-You y Z. Qian, “Effects of environment-relevant

concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent,” Algal Research,

vol. 70, pp. 2211-9264, 2023. https://doi.org/10.1016/j.algal.2023.103008

A. Hom-Diaz, A. Jaén, S. Rodríguez, D. Barceló, T. Vicent y P. Blánquez, “Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and

Pseudokirchneriella subcapitata),” Algal Research, vol. 61, 2022. https://doi.org/10.1016/j.algal.2021.102560

C. Kiki, A. Rashid, Y. Wang, Y. Li, Q. Zeng, C. P. Yu y Q. & Sun, “Dissipation of antibiotics by microalgae:

Kinetics, identification of transformation products and pathways,” Journal of Hazardous Materials, vol. 387,

https://doi.org/10.1016/j.jhazmat.2019.121985

Li, Y., Ma, Y., Yang, L., Duan, S., Zhou, F., Chen, J., ... & Zhang, B, “Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways,” Ecotoxicology and

Environmental Safety, vol. 197, pp. 1-7, 2020. https://doi.org/10.1016/j.ecoenv.2020.110573

S. Aydin, M. Emin Aydin, A. Ulvi y H. & Kilic, “Antibiotics in hospital effluents: occurrence, contribution to urban

wastewater, removal in a wastewater treatment plant, and environmental risk assessment,” Environ Sci Pollut

Res, vol. 26, p. 544–558, 2019. https://doi.org/10.1007/s11356-018-3563-0

Collado, N., Rodriguez-Mozaz, S., Gros, M., Rubirola, A., Barceló, D., Comas, J., ... & Buttiglieri, G.,

“Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system,” Environmental Pollution, pp. 202- 212, 2014. https://doi.org/10.1016/j.envpol.2013.10.040

C. E. Santos, R. N. de Coimbra, S. P. Bermejo, A. I. G. Pérez, and M. O. Cabero, ‘“Comparative Assessment

of Pharmaceutical Removal from Wastewater by the Microalgae Chlorella sorokiniana, Chlorella vulgaris and

Scenedesmus obliquus’, Biological Wastewater Treatment and Resource Recovery”. InTech, Mar. 29, 2017.

https://doi.org/10.5772/66772.

Senta, I., Kostanjevecki, P., Krizman-Matasic, I., Terzic, S., & Ahel, M., “Occurence and behavior of macrolide

antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and

transformation products,” Environmental Science and Technology, vol. 53, pp. 7463-7472, 2019. https://doi.

org/10.1021/acs.est.9b01420

Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & RodriguezPinzón, M., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature”.

Journal of Environmental Management, 237, 408–423 2019. https://doi.org/10.1016/j.jenvman.2019.02.100

Spongberg, A. L., Witter, J. D., Acuña, J., Vargas, J., Murillo, M., Umaña, G., ... & Perez, G., “Reconnaissance

of selected PPCP compounds in Costa Rican surface waters,” Water research, 45(20), 6709-6717, 2011

https://doi.org/10.1016/j.watres.2011.10.004

Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., “Briceño-Guevara, S.,

Rojas-Sánchez, C. E., ... & Rodríguez-Rodríguez, C. E., “Occurrence of pharmaceuticals, hazard assessment

and ecotoxicological evaluation of wastewater treatment plants in Costa Rica, “ Science of The Total

Environment, vol. 746, p. 141200, Dec. 2020,. https://doi.org/10.1016/j.scitotenv.2020.141200

Mao, Y., Yu, Y., Ma, Z., Li, H., Yu, W., Cao, L., & He, Q. “Azithromycin induces dual effects on microalgae:

Roles of photosynthetic damage and oxidative stress, “ Ecotoxicology and environmental safety, 222, 112496.

https://doi.org/10.1016/j.ecoenv.2021.112496.

Kiki, C., Rashid, A., Zhang, Y., Li, X., Chen, T. Y., Adéoye, A. B. E., ... & Sun, Q. “Microalgal mediated antibiotic

co-metabolism: Kinetics, transformation products and pathways, “ Chemosphere, 292, 133438, 2011. https://

doi.org/10.1016/j.chemosphere.2021.133438

Stein-Taylor, J. R. , “Handbook of phycological methods: culture methods and growth measurements.,”

Cambridge University Press, pp. 289–312., 1973.

A. F. El-Yazbi, E. F. Khamis, R. M. Youssef, M. A. El-Sayed y F. M. & Aboukhalil, “Green analytical methods

for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic

formulation of azithromycin and levofloxacin,” Heliyon, vol. 6, nº 9, 2020. https://doi.org/10.1016/j.heliyon.2020.

e04819