Dynamic model of wind speed in a tropical forested landscape

Main Article Content

Gustavo Richmond-Navarro
Gustavo Murillo-Zumbado
Frank Marín-Guillén
Pedro Casanova-Treto

Abstract

Costa Rica has established the development of renewable energy sources as part of the strategy to diminish the fossil fuel dependency. The utilization of wind as a source of energy is one of the alternatives. To maximize the use of wind is necessary to understand the wind-landscape interaction, especially in a country where 52 % of the terrain is covered by forest. The aim of this paper is to find a dynamic model that describes the wind behaviour that considers the roughness length as a variable and not as a constant, as it is usually considered within the literature. A series of data obtained from two different weather stations are analysed. The weather stations are managed by two different institutions: Instituto Tecnológico de Costa Rica (Costa Rica Institute of Technology) and Instituto Meteorológico Nacional (Costa Rica Institute of Meteorology). Both weather stations are located at the main campus of Costa Rica Institute of Technology and data were obtained at two heights above ground level: 1.5 meters and 10 meters. Eureqa software was used to find a correlation between the different weather variables and roughness length as for wind speed. Several expressions are obtained in various scenarios as well as a model for wind speed that replaces the classic roughness length constant value with a dynamic expression, being able to estimate the wind speed at the vertical axis with data from a measuring height near to the ground, avoiding the investment in high value equipment and the necessity of installing support structures of considerable scale. 

Article Details

How to Cite
Richmond-Navarro, G., Murillo-Zumbado, G., Marín-Guillén, F., & Casanova-Treto, P. (2022). Dynamic model of wind speed in a tropical forested landscape. Tecnología En Marcha Journal, 35(2), Pág. 3–15. https://doi.org/10.18845/tm.v35i2.5465
Section
Artículo científico

References

A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja y V. H. Krishna, “A review on small scale wind turbines,” Renew. Sust. Energ. Rev., vol. 56, pp. 1351-1371, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.027

“Plan Nacional de Energía 2015-2030,” MINAET, San José, Costa Rica, 2015.

FAO, Situación de los bosques del mundo. Los bosques y la agricultura: desafíos y oportunidades en relación con el uso de la tierra. Roma, Italia, 2016.

J. D. Holmes, Wind loading of structures, EUA: CRC Press, 2018.

T. Foken y C. J. Napo, Micrometeorology, vo1. 2, Berlin, Alemania: Springer.

K. Sunderland, T. Woolmington, J. Blackledge y M. Conlon, “Small wind turbines in turbulent (urban) environments: A consideration of normal and Weibull distributions for power prediction,” J. Wind. Eng. Ind., vol. 121, pp. 70-81, 2013, doi: https://doi.org/10.1016/j.jweia.2013.08.001

S. Mertens, “Book Review: Wind Energy in the Built Environment —Concentrator Effects of Buildings,” Wind. Eng., vol. 30, n. 5, pp. 451–452, 2006, doi: http://dx.doi.org/10.1260/030952406779502623

W. Tong, “Fundamentals of wind energy”, en Wind Power Generation and Wind Turbine Design, CIUDAD, PAÍS: WIT Press, 2010, pp 1-44.

M. Beccali, G. Cirrincione, A. Marvuglia y C. Serporta, “Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor”, Appl. Energy, vol. 87, n. 3, pp. 884-893, 2010, doi: https://doi.org/10.1016/j.apenergy.2009.05.026

L. Kang, J. Zhang, X. Zou, H. Cheng, C. Zhang y Z. Yang, “Experimental investigation of the aerodynamic roughness length for flexible plants,” Bound.-Layer Meteorol., vol. 172, n. 3, pp. 397-416, 2019, doi: https://doi.org/10.1007/s10546-019-00449-0

A. Rigden, D. Li y G. Salvucci, “Dependence of thermal roughness length on friction velocity across land cover types: A synthesis analysis using AmeriFlux data,” Agric. For. Meteorol., vol. 249, pp. 512-519, 2018, doi: https://doi.org/10.1016/j.agrformet.2017.06.003

E. S. Miles, J. F. Steiner y F. Brun, “Highly variable aerodynamic roughness length (z0) for a hummocky debris-covered glacier,” J. Geophys. Res., vol. 122, n. 16, pp. 8447-8466, 2017, doi: https://doi.org/10.1002/2017JD026510

K. D. Maurer, B. S. Hardiman, C. S. Vogel y G. Bohrer, “Canopy-structure effects on surface roughness parameters: Observations in a Great Lakes mixed-deciduous forest,” Agric. For. Meteorol., vol. 177, pp. 24-34, 2013, doi: https://doi.org/10.1016/j.agrformet.2013.04.002

J. T. Millward-Hopkins, A. S. Tomlin, L. Ma, D. B. Ingham y M. Pourkashanian, “Mapping the wind resource over UK cities,” Renew. Energy, vol. 55, pp. 202-211, 2013, doi: https://doi.org/10.1016/j.renene.2012.12.039

S. M. Weekes y A. S. Tomlin, “Evaluation of a semi-empirical model for predicting the wind energy resource relevant to small-scale wind turbines,” Renew. Energy, vol. 50, pp. 280-288, 2013, doi: https://doi.org/10.1016/j.renene.2012.06.053

L. É. Boudrealt, A. Bechmann, N.N. Sørensen, A. Sogachev y E. Dellwik, “Canopy structure effects on the wind at a complex forested sites,” J. Phys. Conf. Ser., vol. 524, no. 1, p. 012112, 2014, doi: https://doi.org/10.1088/1742-6596/524/1/012112

L. É. Boudrealt, A. Bechmann, L. Tarvainen, L. Klemedtsson, I. Shendryk y E. Dellwik, “A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests,” Agric. For. Meteorol., vol. 201, pp. 86-97, 2015, doi: https://doi.org/10.1016/j.agrformet.2014.10.014

D. Hu, S. Cao, S. Chen y N. Feng, “Mapping aerodynamic roughness length with multi-source remote sensing data,” en 2016 4th. Int. Workshop on Earth Obs. Remote Sens. App. (EORSA), 2016, pp. 373-376, doi: https://doi.org/10.1109/EORSA.2016.7552832

Most read articles by the same author(s)

<< < 1 2