Comportamiento de la intensidad de turbulencia en distintas áreas transversales en un túnel de viento
Contenido principal del artículo
Resumen
Considerando que cada vez más turbinas eólicas operan en condiciones de turbulencia, este estudio sobre la intensidad de turbulencia (TI) en distintas áreas transversales en un túnel de viento se llevó a cabo. Un túnel de viento con un área de pruebas de 15 m de largo, 3.6 m de ancho y 2 m de alto se utilizó; se colocó una cuadricula de madera para generar turbulencia en el flujo y la velocidad del ciento se midió con un anemómetro de hilo caliente. Para determinar si hubo variaciones en la TI se definieron cinco puntos (centro, arriba, abajo, izquierda y derecha) en cuatro áreas transversales luego de la cuadricula de madera. Se determinó que la TI varía drásticamente dentro del área. Se calculó un porcentaje de error desde 3.6 % a 15.2 % cuando se consideraba la variación de la turbulencia dentro del área del rotor en comparación con cuando se usa solamente el punto en el eje del rotor. Para poder describir apropiadamente el flujo turbulento es necesario considerar el promedio de las mediciones de la turbulencia alrededor del área que cubre el rotor.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Citas
S. Mertens, Wind energy in the built environment: concentrator effects on buildings, Brentwood, United Kingdom: Technische Universiteit Delf, 2006.
D. Kim, Y. Kim and B. Kim, "Changes in wind turbine power characteristincs and annual energy production due to atmospheric stability, turbulence intensity, and wind shear," Energy, vol. 214, p. 119051, 2021.
61400-12-1, IEC, Wind turbines - Part 12-2: Power performance measurements of electricity producing wind turbines, 2005.
L. C. Pagnini, M. Burlando and M. P. Repetto, "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, vol. 154, pp. 112-121, 2015.
G. Richmond-Navarro, P. Casanova-Treto and F. Hernández-Castro, "Efecto de un difusor tipo wind lens en un flujo turbulento," Uniciencia, vol. 35, no. 2, pp. 1-18, 2021a.
Q. Li, Y. Kamada, T. Maeda, J. Murata, N. Yusuke and e. al., "Effect of turbulence on power performance of a horizontal axis wind turbine in yawed and no-yawed flow conditions," Energy, vol. 109, pp. 703-711, 2016a.
T. Rogers and S. Omer, "Yaw analysis of a micro-scal horizontal axis wind turbine operating in turbulent wind conditions," International Journal of Low-Carbon Technologies, vol. 8, no. 1, pp. 58-63, 2013.
B. Kosasih and H. S. Hudin, "Influence of inflow TI on the performance of bare and diffuser-augmented micro wind turbine model," Renewable Energy, vol. 87, pp. 154-167, 2016.
L. Clements and A. Chowdhury, "Performance evaluation of wind lens in turbulent environment," Energy Procedia, vol. 160, pp. 777-782, 2019.
S. Wang, Y. Zhou, M. M. Alam and H. Yang, "Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers," Physics of Fluids, vol. 26, no. 11, p. 115107, 2014.
M. Tahani, T. Maeda, N. Babayan, S. Mehrnia, M. Shadmehri, Q. Li, R. Fahimi and M. Masdari, "Investigating the effect of geometrical parameters of an optimized wind turbine blade in turbulent flow," Energy Conversion and Management, vol. 153, pp. 71-82, 2017.
C. R. Chu and P. H. Chiang, "Turbulence effects on the wake," Journal of Wind Engineering and Industrial Aerodynamics, vol. 124, pp. 82-89, 2014.
W. D. Lubitz, "Impact of ambient turbulence of a small wind turbine," Renewable Energy, vol. 61, pp. 69-73, 2006.
C. Sicot, P. Devinant, T. Laverne, S. Loyer and J. Hureau, "Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics," Wind Energy, vol. 9, no. 4, pp. 361-370, 2006.
S. W. Li, W. Wang, J. P. Wang and J. C. Mi, "Effect of TI on airfoil flow: Numerical simulations and experimental measurements," Applied Mathematics and Mechanics (English Edition), vol. 32, no. 8, pp. 1029-1038, 2011.
M. Lin and H. Sarlak, "A comparative study on the flow over an airfoil using transitional turbulence models," in AIP conference proceedings, 2011.
R. Soto, S. Bartholomay, M. Manolesos, C. Nayeri and P. C. O, "EArfoil Shaped Vortex Generators applied on a Research Wind Turbine," in Schitech 2021 Forum, American Institute of Aeronautics and Astronautics, 2021.
S. Hoseinzadeh, A. Bahrami, S. M. Mirhosseini, A. Sohami and S. Heyns, "A detailed experimental airfoil performance investigation using an equipped wind tunnel," Flow Measurement and Instrumentation, vol. 72, p. 101717, 2020.
Q. Li, Y. Kamada, M. T, M. J and Y. Nishida, "Visualization of the flow field and aerodynamic force on a horizontal axis wind turbine in turbulent inflows," Energy, Vols. 1304-1315, p. 111, 2016b.
A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja and V. H. Krishna, "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, vol. 56, pp. 1351-1371, 2016.
Y. Ohya, J. Miyasaki, U. Göltenbott and K. Watanabe, "Power augmentation of shrouded wind turbines in a multirotor system," Journal of Energy Resources Technology, vol. 5, p. 139, 2017.
U. Göltenbott, Ohya, Y, S. Yoshida and P. Jamieson, "Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems," Renewable Energy, vol. 112, pp. 25-34, 2017.
K. Watanabe and Y. Ohya, "Multi-rotor systems using ducted wind turbines for power output increase (Multi lens turbine)," AIAA Scitech Forum, vol. 141, no. 5, 2019.
Y. Ohya and T. Karasudani, "A shrouded wind turbine generating high output power with wind-lens technology," Energies, vol. 3, no. 4, pp. 634-649, 2010.
Y. Ohya and K. Watanabe, "A new approach toward power output enhancement using multirotor systems with shrouded wind turbines," Journal of Energy Resources Technology, vol. 141, no. 5, 2019.
A. Al-Abadi, J. Seok, M. Härtl, Ö. Ertunc and A. Delgado, "Experimental Investigations of the Turbulence Impact on the," in 10th EAWE PhD Seminar on Wind Energy in Europe, Orleans, 2014.
T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, Wind Energy Handbook, Second Edition, John Wiley & Sons, Ltd., 2011.
Q. Li, J. Murata, M. Endo, T. Maeda and C. Kamada, "Experimental and numerical investigation on the effect of turbulent inflows on a horizontal axis wind turbine (part II: Wake characteristics)," Energy, vol. 113, pp. 1304-1315, 2016c.
G. Richmond-Navarro, T. Uchida and W. R. Calderón-Muñoz, "Shrouded wind turbine performance in yawed turbulent," Wind Engineering, p. 0309524X211036041, 2021b.