Discovery of Meaningful Rules by using DTW based on Cubic Spline Interpolation
Main Article Content
Abstract
The ability to make short or long term predictions is at the heart of much of science. In the last decade, the data science community have been highly interested in foretelling real life events, using data mining techniques to discover meaningful rules or patterns, from different data types, including Time Series. Short-term predictions based on “the shape” of meaningful rules lead to a vast number of applications. The discovery of meaningful rules is achieved through efficient algorithms, equipped with a robust and accurate distance measure. Consequently, it is important to wisely choose a distance measure that can deal with noise, entropy and other technical constraints, to get accurate outcomes of similarity from the comparison between two time series. In this work, we do believe that Dynamic Time Warping based on Cubic Spline Interpolation (SIDTW), can be useful to carry out the similarity computation for two specific algorithms: 1- DiscoverRules() and 2- TestRules(). Mohammad Shokoohi-Yekta et al developed a framework, using these two algoritghms, to find and test meaningful rules from time series. Our research expanded the scope of their project, adding a set of well-known similarity search measures, including SIDTW as novel and enhanced version of DTW.
Article Details
Los autores conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y pueda editarlo, reproducirlo, distribuirlo, exhibirlo y comunicarlo en el país y en el extranjero mediante medios impresos y electrónicos. Asimismo, asumen el compromiso sobre cualquier litigio o reclamación relacionada con derechos de propiedad intelectual, exonerando de responsabilidad a la Editorial Tecnológica de Costa Rica. Además, se establece que los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.