Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies

Main Article Content

Jose Alberto Carballo-Madrigal
Renato Rimolo-Donadio
Christian Schuster

Abstract

Exposition of humans to non-ionizing radiation at high frequencies has become ubiquitous due to the higher number of systems operating in that frequency range such as cell phones, wireless networks, and communication systems. The modeling of the impact of this type of radiation is an important issue due to potential short and long-term health effects and for the establishment of regulatory safety limits. From the simulation point of view, this is a challenging task since the wavelengths of interest are much smaller than the typical dimensions of a human body, which leads to the requirement of very fine discretization of the geometrical models and the consequent high demand of computational resources and long execution times.

This article studies the feasibility of a full-wave simulation of field absorption at high frequencies, up to 10 GHz, with general purpose numerical methods and geometries with sizes in the order of a human body. Simple geometries are analyzed, assuming the material properties of fresh water for their inner region. Three different methods are evaluated: the finite integration technique (FIT), finite element method (FEM), and method of moments (MoM), to determine the result convergence and required computational resources for each solution. The results show that already at 10 GHz it is difficult to perform the analysis with moderate computational power (up to 64 GB RAM), but some approximations might be exploited since field penetration in that frequency range is mostly limited to the surface region.

Article Details

How to Cite
Carballo-Madrigal, J. A., Rimolo-Donadio, R., & Schuster, C. (2018). Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies. Tecnología En Marcha Journal, 31(2), 171–182. https://doi.org/10.18845/tm.v31i2.3634
Section
Artículo científico
Author Biographies

Jose Alberto Carballo-Madrigal

Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica, Costa Rica.

Renato Rimolo-Donadio

Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica (TEC), Costa Rica.

Christian Schuster

Institute of Electromagnetic Theory, Hamburg University of Technology (TUHH).

Most read articles by the same author(s)